We have calculated the electric dipole (E1) and magnetic quadrupole (M2) oscillator strengths and spontaneous decay rates for 24 spin-changing transitions of atomic helium. We included the effects of the finite nuclear mass and the anomalous magnetic moment of the electron augmented by the recently derived Pachucki term. The specific transitions for 4He are
and
with
and
for
For the E1 calculations we used the Breit approximation and pseudostate expansions to perform the perturbation sums over intermediate states in both the length and velocity gauge as a check on both numerical accuracy and validity of the transition operators. The corrections for the nuclear mass and the electron anomaly tend to cancel, indicating that if one is included, then so should be the other. The tables give mass- and anomaly-dependent coefficients permitting the easy generation of results for the other isotopes of helium.
Abstract. Probabilities for electron shake-up and shake-o are calculated as relaxation processes following the beta decay of 6 He to form 6 Li, including corrections due to nuclear recoil. Within the sudden approximation, it is found that the correction due to nuclear recoil is nearly an order of magnitude less than that measured by Carlson et al. Phys. Rev. 129, 2220.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.