Promoter methylation status of O-6-methylguanine-DNA methyltransferase (MGMT), a DNA repair enzyme, is a critical biomarker in glioblastoma (GBM), as treatment decisions and clinical trial inclusion rely on its accurate assessment. However, interpretation of results is complicated by poor interassay reproducibility as well as a weak correlation between methylation status and expression levels of MGMT. This study systematically investigates the influence of tumor purity on tissue subjected to MGMT analysis. A quantitative, allele-specific realtime PCR (qAS-PCR) assay was developed to determine genotype and mutant allele frequency of telomerase promoter (pTERT) mutations as a direct measure of tumor purity. We studied tumor purity, pTERT mutation by Sanger sequencing, MGMT methylation by pyrosequencing, IDH1 mutation status, and clinical parameters in a cohort of high-grade gliomas (n ¼ 97). The qAS-PCR reliably predicted pTERT genotype and tumor purity compared with independent methods. Tumor purity positively and significantly correlated with the extent of methylation in MGMT methylated GBMs. Extent of MGMT methylation differed significantly with respect to pTERT mutation hotspot (C228T vs. C250T). Interestingly, frontal lobe tumors showed greater tumor purity than those in other locations. Above all, tumor purity was identified as an independent prognostic factor in GBM. In conclusion, we determined mutual associations of tumor purity with MGMT methylation and pTERT mutations and found that the extent of MGMT methylation reflects tumor purity. In turn, tumor purity is prognostic in IDH1 wild-type GBM.Implications: Tumor purity is an independent prognostic marker in glioblastoma and is associated with the extent of MGMT methylation. Mol Cancer Res; 15(5); 532-40. Ó2017 AACR.
The transcription factor ZEB1 has gained attention in tumor biology of epithelial cancers because of its function in epithelial-mesenchymal transition, DNA repair, stem cell biology and tumor-induced immunosuppression, but its role in gliomas with respect to invasion and prognostic value is controversial. We characterized ZEB1 expression at single cell level in 266 primary brain tumors and present a comprehensive dataset of high grade gliomas with Ki67, p53, IDH1, and EGFR immunohistochemistry, as well as EGFR FISH. ZEB1 protein expression in glioma stem cell lines was compared to their parental tumors with respect to gene expression subtypes based on RNA-seq transcriptomic profiles. ZEB1 is widely expressed in glial tumors, but in a highly variable fraction of cells. In glioblastoma, ZEB1 labeling index is higher in tumors with EGFR amplification or IDH1 mutation. Co-labeling studies showed that tumor cells and reactive astroglia, but not immune cells contribute to the ZEB1 positive population. In contrast, glioma cell lines constitutively express ZEB1 irrespective of gene expression subtype. In conclusion, our data indicate that immune infiltration likely contributes to differential labelling of ZEB1 and confounds interpretation of bulk ZEB1 expression data.
<p>Tumor purity of matched tumor/cell line pairs: Tumor purity of GBM bulk tumor samples and matched gliomasphere cell lines was determined either using ESTIMATE for deconvolution of gene expression profiles (A) or pTERT MAF (B, C). Connected dots indicate matched pairs.</p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.