Abstract:The exploitation of technologies with which to harness the energy from ocean currents will have considerable possibilities in the future thanks to their enormous potential for electricity production and their high predictability. In this respect, the development of methodologies for the economic viability of these technologies is fundamental to the attainment of a consistent quantification of their costs and the discovery of their economic viability, while simultaneously attracting investment in these technologies. This paper presents a methodology with which to determine the economic viability of tidal energy projects, which includes a technical study of the life-cycle costs into which the development of a tidal farm can be decomposed: concept and definition, design and development, manufacturing, installation, operation and maintenance and dismantling. These cost structures are additionally subdivided by considering their sub-costs and bearing in mind the main components of the tidal farm: the nacelle, the supporting tidal energy converter structure and the export power system. Furthermore, a technical study is developed in order to obtain an estimation of the annual energy produced (and, consequently, the incomes generated if the electric tariff is known) by considering its principal attributes: the characteristics of the current, the ability of the device to capture energy and its ability to convert and export the energy. The methodology has been applied (together with a sensibility analysis) to the particular case of a farm composed of first generation tidal energy converters in one of the Channel Island Races, the Alderney Race, in the U.K., and the results have been attained by means of the computation of engineering indexes, such as the net present value, the internal rate of return, the discounted payback period and the levelized cost of energy, which indicate that the proposed project is economically viable for all the case studies.
Unmanned aerial vehicles (UAVs) represent an assistance solution for home care of dependent persons. These aircraft can cover the home, accompany the person, and position themselves to take photographs that can be analyzed to determine the person's mood and the assistance needed. In this context, this work principally aims to design a tool to aid in the development and validation of the navigation algorithms of an autonomous vision-based UAV for monitoring dependent people. For that, a distributed architecture has been proposed based on the real-time communication of two modules, one of them in charge of the dynamics of the UAV, the trajectory planning and the control algorithms, and the other devoted to visualizing the simulation in an immersive virtual environment. Thus, a system has been developed that allows the evaluation of the behavior of the assistant UAV from a technological point of view, as well as to carry out studies from the assisted person's viewpoint. An initial validation of a quadrotor model monitoring a virtual character demonstrates the advantages of the proposed system, which is an effective, safe and adaptable tool for the development of vision-based UAVs to help dependents at home.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.