Despite its societal relevance, the question whether fluctuations in flood occurrence or magnitude are coherent in space has hardly been addressed in quantitative terms. We investigate this question for Germany by analysing fluctuations in annual maximum series (AMS) values at 68 discharge gauges for the common time period 1932-2005. We find remarkable spatial coherence across Germany given its different flood regimes. For example, there is a tendency that flood-rich/-poor years in sub-catchments of the Rhine basin, which are dominated by winter floods, coincide with flood-rich/-poor years in the southern sub-catchments of the Danube basin, which have their dominant flood season in summer. Our findings indicate that coherence is caused rather by persistence in catchment wetness than by persistent periods of higher/lower event precipitation. Further, we propose to differentiate between event-type and non-event-type coherence. There are quite a number of hydrological years with considerable non-event-type coherence, i.e. AMS values of the 68 gauges are spread out through the year but in the same magnitude range. Years with 2 extreme flooding tend to be of event-type and non-coherent, i.e. there is at least one precipitation event that affects many catchments to various degree. Although spatial coherence is a remarkable phenomenon, and large-scale flooding across Germany can lead to severe situations, extreme magnitudes across the whole country within one event or within one year were not observed in the investigated period.
Abstract. The link between streamflow extremes and climatology has been widely studied in recent decades. However, a study investigating the effect of large-scale circulation variations on the distribution of seasonal discharge extremes at the European level is missing. Here we fit a climate-informed generalized extreme value (GEV) distribution to about 600 streamflow records in Europe for each of the standard seasons, i.e., to winter, spring, summer and autumn maxima, and compare it with the classical GEV distribution with parameters invariant in time. The study adopts a Bayesian framework and covers the period 1950 to 2016. Five indices with proven influence on the European climate are examined independently as covariates, namely the North Atlantic Oscillation (NAO), the east Atlantic pattern (EA), the east Atlantic–western Russian pattern (EA/WR), the Scandinavia pattern (SCA) and the polar–Eurasian pattern (POL). It is found that for a high percentage of stations the climate-informed model is preferred to the classical model. Particularly for NAO during winter, a strong influence on streamflow extremes is detected for large parts of Europe (preferred to the classical GEV distribution for 46 % of the stations). Climate-informed fits are characterized by spatial coherence and form patterns that resemble relations between the climate indices and seasonal precipitation, suggesting a prominent role of the considered circulation modes for flood generation. For certain regions, such as northwestern Scandinavia and the British Isles, yearly variations of the mean seasonal climate indices result in considerably different extreme value distributions and thus in highly different flood estimates for individual years that can also persist for longer time periods.
Central Asia (CA) is subjected to a large variability of precipitation. This study presents a statistical model, relating precipitation anomalies in three subregions of CA in the cold season (November–March) with various predictors in the preceding October. Promising forecast skill is achieved for two subregions covering 1) Uzbekistan, Turkmenistan, Kyrgyzstan, Tajikistan, and southern Kazakhstan and 2) Iran, Afghanistan, and Pakistan. ENSO in October is identified as the major predictor. Eurasian snow cover and the quasi-biennial oscillation further improve the forecast performance. To understand the physical mechanisms, an analysis of teleconnections between these predictors and the wintertime circulation over CA is conducted. The correlation analysis of predictors and large-scale circulation indices suggests a seasonal persistence of tropical circulation modes and a dynamical forcing of the westerly circulation by snow cover variations over Eurasia. An EOF analysis of pressure and humidity patterns allows separating the circulation variability over CA into westerly and tropical modes and confirms that the identified predictors affect the respective circulation characteristics. Based on the previously established weather type classification for CA, the predictors are investigated with regard to their effect on the regional circulation. The results suggest a modification of the Hadley cell due to ENSO variations, with enhanced moisture supply from the Arabian Gulf during El Niño. They further indicate an influence of Eurasian snow cover on the wintertime Arctic Oscillation (AO) and Northern Hemispheric Rossby wave tracks. Positive anomalies favor weather types associated with dry conditions, while negative anomalies promote the formation of a quasi-stationary trough over CA, which typically occurs during positive AO conditions.
To understand the atmospheric mechanisms resulting in a pronounced cold season climate variability in central Asia, an objective weather-type classification is conducted, utilizing a k-means-based clustering approach applied to 500-hPa geopotential height (GPH) fields. Eight weather types (WT) are identified and analyzed with regard to characteristic pressure patterns and moisture fluxes over Eurasia and specific near-surface climate conditions over central Asia. To identify remote drivers of the central Asian climate, WT frequencies are analyzed for their relationships with tropical and extratropical teleconnection modes. The results indicate an influence of Northern Hemispheric planetary wave tracks on westerly moisture fluxes with positive anomalies of precipitation associated with the formation of a Rossby trough over central Asia. Particularly the propagation of the east Atlantic–western Russia and the Scandinavian patterns is shown to modulate regional climate conditions. Variations of ENSO are shown to affect the frequency of particular WTs because of the formation of an anticyclonic anomaly over the Indian Ocean and an increase of tropical fluxes of moisture and heat into central Asia during El Niño events. Further a WT internal influence of ENSO is distinctly defined, with enhanced moisture supply during the ENSO warm phase. The analysis of climatic trends shows that 50% of observed temperature changes can be assigned to variations of the WT composition, indicating that most likely changing regional circulation characteristics account for the enhanced warming rates in central Asia. Trends of precipitation sums are likewise shown to be associated with changing WT frequencies, although the WT–precipitation relationships include large uncertainties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.