Lung cancer is the leading cause of cancer deaths worldwide, yet few genetic markers of lung cancer risk useful for screening exist. The let-7 family-of-microRNAs (miRNA) are global genetic regulators important in controlling lung cancer oncogene expression by binding to the 3 ¶ untranslated regions of their target mRNAs. The purpose of this study was to identify single nucleotide polymorphisms (SNP) that could modify let-7 binding and to assess the effect of such SNPs on target gene regulation and risk for non-small cell lung cancer (NSCLC). let-7 complementary sites (LCS) were sequenced in the KRAS 3 ¶ untranslated region from 74 NSCLC cases to identify mutations and SNPs that correlated with NSCLC. The allele frequency of a previously unidentified SNP at LCS6 was characterized in 2,433 people (representing 46 human populations). The frequency of the variant allele is 18.1% to 20.3% in NSCLC patients and 5.8% in world populations. The association between the SNP and the risk for NSCLC was defined in two independent case-control studies. A case-control study of lung cancer from New Mexico showed a 2.3-fold increased risk (confidence interval, 1.1-4.6; P = 0.02) for NSCLC cancer in patients who smoked <40 pack-years. This association was validated in a second independent case-control study. Functionally, the variant allele results in KRAS overexpression in vitro. The LCS6 variant allele in a KRAS miRANA complementary site is significantly associated with increased risk for NSCLC among moderate smokers and represents a new paradigm for let-7 miRNAs in lung cancer susceptibility. [Cancer Res 2008;68(20):8535-40]
DNA polymerase beta plays a central role in base excision repair (BER), which removes large numbers of endogenous DNA lesions from each cell on a daily basis. Little is currently known about germline polymorphisms within the POLB locus, making it difficult to study the association of variants at this locus with human diseases such as cancer. Yet, approximately thirty percent of human tumor types show variants of DNA polymerase beta. We have assessed the global frequency distributions of coding and common non-coding SNPs in and flanking the POLB gene for a total of 14 sites typed in approximately 2400 individuals from anthropologically defined human populations worldwide. We have found a marked difference between haplotype frequencies in African populations and in non-African populations.
Supplementary Figure 1, Tables 1-4 from A SNP in a <i>let-7</i> microRNA Complementary Site in the <i>KRAS</i> 3′ Untranslated Region Increases Non–Small Cell Lung Cancer Risk
Supplementary Figure 1, Tables 1-4 from A SNP in a <i>let-7</i> microRNA Complementary Site in the <i>KRAS</i> 3′ Untranslated Region Increases Non–Small Cell Lung Cancer Risk
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.