In this study, novel electrolyte mixtures for Li-ion cells are presented with highly improved safety features. The electrolyte formulations are composed of ethylene carbonate/dimethyl sulfone (80:20 wt/wt) as the solvent mixture and LiBF4 , lithium bis(trifluoromethanesulfonyl)azanide, and lithium bis(oxalato)borate as the conducting salts. Initially, the electrolytes are characterized with regard to their physical properties, their lithium transport properties, and their electrochemical stability. The key advantages of the electrolytes are high flash points of >140 °C, which enhance significantly the intrinsic safety of Li-ion cells containing these electrolytes. This has been quantified by measurements in an accelerating rate calorimeter. By using the newly developed electrolytes, which are liquid down to T=-10 °C, it is possible to achieve C-rates of up to 1.5 C with >80 % of the initial specific capacity. During 100 cycles in cell tests (graphite||LiNi1/3 Co1/3 Mn1/3 O2 ), it is proven that the retention of the specific capacity is >98 % of the third discharge cycle with dependence on the conducting salt. The best electrolyte mixture yields a capacity retention of >96 % after 200 cycles in coin cells.
Abstract:In this study, micron-sized pored membranes, based on the co-polymer polyvinylidene difluoride hexafluoropropylene (PVdF-HFP) were prepared via phase inversion techniques. The aim of the approach was to find less harmful and less toxic solvents to fabricate such films. Therefore, the Hansen solubility approach was used to identify safer and less toxic organic solvents for the phase inversion process, relative to present solvent mixtures, based on acetone, dimethyl formamide, dimethyl acetamide or methanol. With this approach, it was possible to identify cyclopentanone, ethylene glycol and benzyl alcohol as suitable solvents for the membrane preparation process. Physicochemical and mechanical properties were analyzed and compared, which revealed a uniform membrane structure through the cross section. Differences were observed at the top surface, in dependence of both preparation approaches, which are described in detail.
The Back Cover picture shows the enhancement of thermal safety of Li‐ion battery cells by modification of the electrolyte solvent composition. The substitution of volatile linear organic carbonates by dimethyl sulfone leads to an improvement of the flash point of the electrolyte formulation to >140 °C. Surprisingly, both solvents (ethylene carbonate and dimethyl sulfone) are solid at room temperature, but the electrolyte mixture remains in liquid state at temperatures of as low as 0–5 °C. The improvement in thermal safety is schematically depicted in the form of pouch cell images whereas it has been proven for coin cells in the manuscript. However, it should be noted that the use of particle‐coated PET‐based separators additionally contributes to cell safety. More details can be found in the Full paper by Hofmann et al. (DOI: ).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.