Flood risk mitigation usually requires a significant investment of public resources and cost-effectiveness should be ensured. The assessment of the benefits of hydraulic works requires the quantification of (i) flood risk in absence of measures,(ii) risk in presence of mitigation works, (iii) investments to achieve acceptable residual risk. In this work a building-scale is adopted to estimate direct tangible flood losses to several building classes (e.g. residential, industrial, commercial, However, the results show that although hydraulic works are cost-effective, a significant residual risk has to be managed and the achievement of the desired level of acceptable risk would require about 1 billion euros of investments.
The management of natural hazards occurring over a territory entails two main phases: a preoperational-or pre-event-phase, whose objective is to relocate resources closer to sites characterized by the highest hazard, and an operational-during the event-phase, whose objective is to manage in real time the available resources by allocating them to sites where their intervention is needed. Obviously, the two phases are closely related, and demand a unified and integrated treatment. This work presents a unifying framework that integrates various decisional problems arising in the management of different kinds of natural hazards. The proposed approach, which is based on a mathematical programming formulation, can support the decisionmakers in the optimal resource allocation before (preoperational phase) and during (operational phase) an emergency due to natural hazard events. Different alternatives of modeling the resources and the territory are proposed and discussed according to their appropriateness in the preoperational and operational phases. The proposed approach can be applied to the management of any natural hazard and, from an integration perspective, may be particularly useful for risk management in civil protection operations. An application related to the management of wildfire hazard is presented.
Abstract. During the autumn of 2011 two catastrophic, very intense rainfall events affected two different parts of the Liguria Region of Italy causing various flash floods. The first occurred in October and the second at the beginning of November. Both the events were characterized by very high rainfall intensities (> 100 mm h−1) that persisted on a small portion of territory causing local huge rainfall accumulations (> 400 mm 6 h−1). Two main considerations were made in order to set up this work. The first consideration is that various studies demonstrated that the two events had a similar genesis and similar triggering elements. The second very evident and coarse concern is that two main elements are needed to have a flash flood: a very intense and localized rainfall event and a catchment (or a group of catchments) to be affected. Starting from these assumptions we did the exercise of mixing the two flash flood ingredients by putting the rainfall field of the first event on the main catchment struck by the second event, which has its mouth in the biggest city of the Liguria Region: Genoa. A complete framework was set up to quantitatively carry out a “what if” experiment with the aim of evaluating the possible damages associated with this event. A probabilistic rainfall downscaling model was used to generate possible rainfall scenarios maintaining the main characteristics of the observed rainfall fields while a hydrological model transformed these rainfall scenarios in streamflow scenarios. A subset of streamflow scenarios is then used as input to a 2-D hydraulic model to estimate the hazard maps, and finally a proper methodology is applied for damage estimation. This leads to the estimation of the potential economic losses and of the risk level for the people that stay in the affected area. The results are interesting, surprising and in a way worrying: a rare but not impossible event (it occurred about 50 km away from Genoa) would have caused huge damages estimated between 120 and EUR 230 million for the affected part of the city of Genoa, Italy, and more than 17 000 potentially affected people.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.