Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver disease. Its worldwide prevalence is rapidly increasing and is currently estimated at 24%. NAFLD is highly associated with many features of the metabolic syndrome, including obesity, insulin resistance, hyperlipidaemia, and hypertension. The pathogenesis of NAFLD is complex and not fully understood, but there is increasing evidence that the gut microbiota is strongly implicated in the development of NAFLD. In this review, we discuss the major factors that induce dysbiosis of the gut microbiota and disrupt intestinal permeability, as well as possible mechanisms leading to the development of NAFLD. We also discuss the most consistent NAFLD-associated gut microbiota signatures and immunological mechanisms involved in maintaining the gut barrier and liver tolerance to gut-derived factors. Gut-derived factors, including microbial, dietary, and host-derived factors involved in NAFLD pathogenesis, are discussed in detail. Finally, we review currently available diagnostic and prognostic methods, summarise latest knowledge on promising microbiota-based biomarkers, and discuss therapeutic strategies to manipulate the microbiota, including faecal microbiota transplantation, probiotics and prebiotics, deletions of individual strains with bacteriophages, and blocking the production of harmful metabolites.
The worldwide incidence of many immune-mediated and metabolic diseases, initially affecting only the wealthy Western countries, is increasing rapidly. Many of these diseases are associated with the compositional and functional alterations of gut microbiota, i.e., dysbiosis. The most consistent markers of the dysbiosis are a decrease in microbiota diversity and an expansion of Proteobacteria. The role of food preservatives as potential triggers of gut microbiota dysbiosis has been long overlooked. Using a human microbiota-associated mouse model, we demonstrate that a mixture of common antimicrobial food additives induces dysbiosis characterised by an overgrowth of Proteobacteria phylum and a decrease in the Clostridiales order. Remarkably, human gut microbiota in a Nod2-deficient genetic background is even more susceptible to the induction of Proteobacteria dysbiosis by additives than the microbiota in a wild-type background. To conclude, our data demonstrate that antimicrobial food additives trigger gut microbiota dysbiosis in both wild-type and Nod2-deficient backgrounds and at the exposure levels reached in European populations. Whether this additive-modified gut microbiota plays a significant role in the pathogenesis of immune-mediated and metabolic diseases remains to be elucidated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.