Climate change is causing an increase in the frequency and intensity of marine heatwaves (MHWs) and mass mortality events (MMEs) of marine organisms are one of their main ecological impacts. Here, we show that during the 2015-2019 period, the Mediterranean Sea has experienced exceptional thermal conditions resulting in the onset of five consecutive years of widespread MMEs across the basin. These MMEs affected thousands of kilometers of coastline from the surface to 45 m, across a range of marine habitats and taxa (50 taxa across 8 phyla). Significant relationships were found between the incidence of MMEs and the heat exposure associated with MHWs observed both at the surface and across depths. Our findings reveal that the Mediterranean Sea is experiencing an acceleration of the ecological impacts of MHWs which poses an unprecedented threat to its ecosystems' health and functioning.
1. In the Mediterranean Sea, dense populations of the gorgonian Paramuricea clavata shape marine animal forests, characterizing the seascapes of coralligenous habitats.Despite concerns for its health, with several anthropogenic threats and recent mass mortality events, mainly triggered by thermal anomalies, the understorey of its forests and the ecological processes that they promote are still little known. Here, the abundance and composition of epibenthic assemblages inside and outside P. clavata forests were investigated across the central and western Mediterranean Sea, by applying a multifactorial sampling design.2. In spite of the large variability in the structures of epibenthic assemblages at local and regional scales, the gorgonian understoreys share some common features, such as higher abundances of calcareous builder organisms and reduced invasion by the non-indigenous alga Caulerpa cylindracea, compared with the adjacent unforested rocky bottoms. Paramuricea clavata showed non-linear density-dependent relationships with algal turfs and non-encrusting algae belonging to the genus Peyssonnelia. Moreover, by entrapping benthic mucilaginous aggregates with their branches, these gorgonians risk topical necrotic lesions, but may reduce the suffocation risks for understorey organisms. 3. Overall, P. clavata forests may enhance bioconstruction processes and increase resistance and resilience of the benthic assemblages in the Mediterranean coralligenous habitats. This species and its forests, together with their understoreys, should be considered as essential elements of the ecology of the Mediterranean Sea, and therefore worthy of specific and effective protection measures. 4. Conservation strategies should reduce the risk of mechanical damage by regulating fishing activities, anchorages, and scuba diving where gorgonian forests are present. Moreover, when evident alterations are documented, restoration actions should be implemented to recover the integrity of gorgonian forests.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.