The novel coronavirus (SARS-CoV-2) has rapidly developed into a global epidemic. To control its spread, countries have implemented non-pharmaceutical interventions (NPIs), such as school closures, bans of small gatherings, or even stay-at-home orders. Here we study the effectiveness of seven NPIs in reducing the number of new infections, which was inferred from the reported cases of COVID-19 using a semi-mechanistic Bayesian hierarchical model. Based on data from the first epidemic wave of n = 20 countries (i.e., the United States, Canada, Australia, the EU-15 countries, Norway, and Switzerland), we estimate the relative reduction in the number of new infections attributed to each NPI. Among the NPIs considered, bans of large gatherings were most effective, followed by venue and school closures, whereas stay-at-home orders and work-from-home orders were least effective. With this retrospective cross-country analysis, we provide estimates regarding the effectiveness of different NPIs during the first epidemic wave.
The novel coronavirus (SARS-CoV-2) has rapidly developed into a global epidemic. To control its spread, countries have implemented non-pharmaceutical interventions (NPIs), such as school closures, gathering bans, or even stay-at-home orders. Here we study the effectiveness of seven NPIs in reducing the number of new infections, which was inferred from the reported cases of COVID-19 using a semi-mechanistic Bayesian hierarchical model. Based on data from the first epidemic wave of n = 20 countries (i.e., the United States, Canada, Australia, the EU-15 countries, Norway, and Switzerland), we estimate the relative reduction in the number of new infections attributed to each NPI. Among the NPIs considered, event bans were most effective, followed by venue and school closures, whereas stay-at-home orders and work bans were least effective. With this retrospective cross-country analysis, we provide estimates regarding the effectiveness of different NPIs during the first epidemic wave.
OBJECTIVE To develop a noninvasive hypoglycemia detection approach using smartwatch data. RESEARCH DESIGN AND METHODS We prospectively collected data from two wrist-worn wearables (Garmin vivoactive 4S, Empatica E4) and continuous glucose monitoring values in adults with diabetes on insulin treatment. Using these data, we developed a machine learning (ML) approach to detect hypoglycemia (<3.9 mmol/L) noninvasively in unseen individuals and solely based on wearable data. RESULTS Twenty-two individuals were included in the final analysis (age 54.5 ± 15.2 years, HbA1c 6.9 ± 0.6%, 16 males). Hypoglycemia was detected with an area under the receiver operating characteristic curve of 0.76 ± 0.07 solely based on wearable data. Feature analysis revealed that the ML model associated increased heart rate, decreased heart rate variability, and increased tonic electrodermal activity with hypoglycemia. CONCLUSIONS Our approach may allow for noninvasive hypoglycemia detection using wearables in people with diabetes and thus complement existing methods for hypoglycemia detection and warning.
Acute generalized exanthematous pustulosis (AGEP) is a rare skin adverse drug reaction. The pathophysiology and causative drugs associated with AGEP are poorly understood, with the majority of studies in AGEP focusing on a single-drug-outcome association. We therefore aimed to explore and characterize frequently reported drug combinations associated with AGEP using the WHO pharmacovigilance database VigiBase. In this explorative cross-sectional study of a pharmacovigilance database using a data-driven approach, we assessed individual case safety reports (ICSR) with two or more drugs reported to VigiBase. A total of 2649 ICSRs reported two or more drugs. Cardiovascular drugs, including antithrombotics and beta-blockers, were frequently reported in combination with other drugs, particularly antibiotics. The drug pair of amoxicillin and furosemide was reported in 57 ICSRs (2.2%), with an O/E ratio of 1.3, and the combination of bisoprolol and furosemide was recorded 44 times (1.7%), with an O/E ratio of 5.5. The network analysis identified 10 different communities of varying sizes. The largest cluster primarily consisted of cardiovascular drugs. This data-driven and exploratory study provides the largest real-world assessment of drugs associated with AGEP to date. The results identify a high frequency of cardiovascular drugs, particularly used in combination with antibiotics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.