<p class="Abstrak">Saat ini banyak dikembangkan proses pendeteksian pneumonia berdasarkan citra paru-paru dari hasil foto rontgen (x-ray), sebagaimana juga dilakukan pada penelitian ini. Metode yang digunakan adalah <em>Convolutional Neural Network</em> (CNN) dengan arsitektur yang berbeda dengan sejumlah penelitian sebelumnya. Selain itu, penelitian ini juga memodifikasi model CNN dimana metode <em>Extreme Learning Machine</em> (ELM) digunakan pada bagian klasifikasi, yang kemudian disebut CNN-ELM. Dataset untuk uji coba menggunakan kumpulan citra paru-paru hasil foto rontgen pada Kaggle yang terdiri atas 1.583 citra normal dan 4.237 citra pneumonia. Citra asal pada dataset kaggle ini bervariasi, tetapi hampir semua diatas ukuran 1000x1000 piksel. Ukuran citra yang besar ini dapat membuat pemrosesan klasifikasi kurang efektif, sehingga mesin CNN biasanya memodifikasi ukuran citra menjadi lebih kecil. Pada penelitian ini, pengujian dilakukan dengan variasi ukuran citra input, untuk mengetahui pengaruhnya terhadap kinerja mesin pengklasifikasi. Hasil uji coba menunjukkan bahwa ukuran citra input berpengaruh besar terhadap kinerja klasifikasi pneumonia, baik klasifikasi yang menggunakan metode CNN maupun CNN-ELM. Pada ukuran citra input 200x200, metode CNN dan CNN-ELM menunjukkan kinerja paling tinggi. Jika kinerja kedua metode itu dibandingkan, maka Metode CNN-ELM menunjukkan kinerja yang lebih baik daripada CNN pada semua skenario uji coba. Pada kondisi kinerja paling tinggi, selisih akurasi antara metode CNN-ELM dan CNN mencapai 8,81% dan selisih F1 Score mencapai 0,0729. Hasil penelitian ini memberikan informasi penting bahwa ukuran citra input memiliki pengaruh besar terhadap kinerja klasifikasi pneumonia, baik klasifikasi menggunakan metode CNN maupun CNN-ELM. Selain itu, pada semua ukuran citra input yang digunakan untuk proses klasifikasi, metode CNN-ELM menunjukkan kinerja yang lebih baik daripada metode CNN.</p><p class="Abstrak"> </p><p class="Abstrak"><em><strong>Abstract</strong></em></p><p class="Abstract"><em>This research developed a pneumonia detection machine based on the lungs' images from X-rays (x-rays). The method used is the Convolutional Neural Network (CNN) with a different architecture from some previous research. Also, the CNN model is modified, where the classification process uses the Extreme Learning Machine (ELM), which is then called the CNN-ELM method. The empirical experiments dataset used a collection of lung x-ray images on Kaggle consisting of 1,583 normal images and 4,237 pneumonia images. The original image's size on the Kaggle dataset varies, but almost all of the images are more than 1000x1000 pixels. For classification processing to be more effective, CNN machines usually use reduced-size images. In this research, experiments were carried out with various input image sizes to determine the effect on the classifier's performance. The experimental results show that the input images' size has a significant effect on the classification performance of pneumonia, both the CNN and CNN-ELM classification methods. At the 200x200 input image size, the CNN and CNN-ELM methods showed the highest performance. If the two methods' performance is compared, then the CNN-ELM Method shows better performance than CNN in all test scenarios. The difference in accuracy between the CNN-ELM and CNN methods reaches 8.81% at the highest performance conditions, and the difference in F1-Score reaches 0.0729. This research provides important information that the size of the input image has a major influence on the classification performance of pneumonia, both classification using the CNN and CNN-ELM methods. Also, on all input image sizes used for the classification process, the CNN-ELM method shows better performance than the CNN method.</em></p>
One of the digital data is a document. Documents can be easily copied and deleted. Anyone can retype or copy parts of the document. In this paper will detect text similarity. The more similarity of words there is the more indicated the document is plagiarism. Winnowing algorithm performs the calculation of hash values of each k-gram. This method improves the search time with more accuracy in the detection process. All data selected hash values will be fingerprints of a document. Fingerprint will be used as a basis for comparing similarities between text data. The fingerprint value of the winnowing process for each document will be matched by using the Jaccard Coefficient to measure the similarity of the text. In this paper results show that the adjustment of the k-gram and window values can affect the final result of the similarity percentage value. The smaller the k-gram value, the greater the percentage value.
Student grouping, particularly in high school, is a necessary process to divide and classify students into classes based on their abilities and interests. Each school may have different approaches to decide the grouping, but most schools use academic grades. The activity occurs every new academic year and schools with plenty of new students registered may feel a bit overwhelmed with this grouping assignment. A decision support system which can automatically perform grouping on a list of students may be able to help the school’s staffs with this repetitive task. A self-organizing map (SOM) is an example of unsupervised learning algorithm using an artificial neural network structure to produce a low dimensional representation from a given input. However, SOM is also known as one of clustering techniques, since dimensionality reduction may also be seen as reducing (or clustering) input data to lower dimensions (or clusters). This research aims to group new enrolled students to a high school based on their academic grades using a SOM learning algorithm. The grades came from their rapport books and national examination results from their previous study. The resulting groups are three distinct clusters which represents Life Sciences, Social Sciences, and Linguistics study areas.
Dengan adanya pandemi COVID-19, maka protokol kesehatan seperti menjaga jarak, mencuci tangan dengan sabun secara rutin, dan menggunakan masker merupakan arahan yang diberikan oleh World Health Organization (WHO) untuk mengurangi resiko penyebaran virus COVID-19. Tetapi dengan adanya arahan tersebut, masih ditemukan orang yang tidak menggunakan masker di tempat umum. Munculnya trending Machine Learning dan Deep Learning menciptakan berbagai riset untuk menemukan metode – metode baru dan arsitektur mutakhir seperti YOLO (You Only Look Once). YOLO merupakan arsitektur detector yang diklaim sebagai “fastest deep learning object detector” yang mengorbankan akurasi dengan kecepatan. Dengan menggunakan YOLOv3, kita dapat menciptakan deteksi masker yang robust dan presisi untuk mendeteksi apakah seseorang yang tampak pada gambar / kamera bisa dikenali menggunakan masker atau tidak. Tetapi dengan tersedianya YOLOv3 yang memerlukan arsitektur komputer yang berat, maka sistem arsitektur yang lebih lama akan kesulitan menggunakan arsitektur tersebut. Maka menggunakan YOLOv3-tiny dapat menjadi solusi untuk arsitektur komputer yang lebih lama. Tentunya apabila konsekuensi YOLOv3 adalah akurasi, maka menggunakan YOLOv3-tiny tentunya akan lebih memperburuk akurasi deteksi objek.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.