Este trabalho objetivou avaliar a influência da antropização e de secas severas na dinâmica da cobertura florestal de um fragmento de caatinga na região semiárida do Brasil, ao longo de 32 anos. Para o cálculo do índice de seca, agrupou-se os valores de precipitação média pondera da anual da série histórica (1988 - 2019) em Decis. A partir do quantitativo de área encontrada nas classes de uso e ocupação (cobertura florestal conservada, cobertura natural campestre, área antropizada e corpos d’água) dos anos extremos secos e chuvosos, procedeu-se à análise estatística multivariada pelo método da análise de agrupamento hierárquico. Os valores médios dos agrupamentos foram submetidos à análise estatística e confrontados pelo teste T de Student (p ≤ 0,05). Foram encontrados três grupos distintos: G1 constituído por anos secos e muito secos da década de 90, o agrupamento 2 formado por anos extremos úmidos e muito úmidos, independentemente do período, e G3 (agrupamento intermediário) constituído tanto por anos típicos secos quanto chuvosos, especificamente de períodos mais recentes (2000 a 2019). Os grupos G2 e G3 contribuíram com as maiores quantitativo de cobertura florestal conservada, 143.176,50 e 144.928,13 ha, respectivamente. Os resultados demonstram que a precipitação pluviométrica está mais estritamente correlacionada com as áreas antropizadas do que propriamente com a regeneração natural da cobertura florestal. A vegetação arbórea-arbustiva do fragmento investigado tem passado por um processo de regeneração natural na década recente (2002 - 2019) em virtude do abandono de áreas anteriormente antropizadas na década de 90. Drought and Anthropogenic Effect on the Dynamics of Forest Cover in a Fragment of Caatinga Phytogeographic Domain A B S T R A C TThe aim of this study was to evaluate the influence of anthropogenic action and severe drought on the dynamics of forest cover in a fragment of caatinga in the semi-arid region of Brazil, over 32 years. To calculate the drought index, the values for weighted mean annual precipitation from an historical series (1988 - 2019) were grouped into deciles. Based on the quantification of the area found in the classes of use and occupation (conserved forest cover, natural rural cover, anthropogenic area and water bodies) for the extreme dry and rainy years, multivariate statistical analysis was carried out using hierarchical cluster analysis. The mean values of the clusters were submitted to statistical analysis and compared by Student's t-test (p ≤ 0.05). Three distinct groups were found: G1, consisting of dry and very dry years from the 1990s; G2, formed by extreme wet and very wet years regardless of the period; and G3 (intermediate group), comprising both dry and rainy years, specifically from more recent periods (2000 to 2019). Groups G2 and G3 contributed the greatest amount of conserved forest cover, 143,176.50 and 144,928.13 ha respectively. The results show that rainfall is more closely correlated with the anthropogenic areas than with the natural regeneration of forest cover. The woody vegetation of the fragment under investigation has undergone a process of natural regeneration during the last decade (2008 - 2016), due to previously anthropogenic areas being abandoned in the 1990s.Keywords: Caatinga, remote sensing, desertification.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.