The non-classical human leukocyte antigen G (HLA-G) is expressed at a high frequency in renal cell carcinoma (RCC) and is associated with a higher tumor grade and a poor clinical outcome. This might be caused by the HLA-G-mediated inhibition of the cytotoxicity of T and NK cells. Therefore a selective targeting of HLA-G might represent a powerful strategy to enhance the immunogenicity of RCC lesions. Recent studies identified a number of HLA-G-regulating microRNAs (miRs) and demonstrated an inverse expression of some of these miRs with HLA-G in RCC in vitro and in vivo. However, it was postulated that further miRs might exist contributing to the tightly controlled selective HLA-G expression.By application of a miR enrichment assay (miTRAP) in combination with in silico profiling two novel HLA-G-regulatory miRs, miR-548q and miR-628-5p, were identified. Direct interactions of both miRs with the 3′ untranslated region of HLA-G were confirmed with luciferase reporter gene assays. In addition, qPCR analyses and immunohistochemical staining revealed an inverse, expression of miR-628-5p, but not of miR-548q to the HLA-G protein in primary RCC lesions and cell lines. Stable overexpression of miR-548q and miR-628-5p caused a downregulation of HLA-G mRNA and protein. This leads in case of miR-548q to an enhanced NK cell-mediated HLA-G-dependent cytotoxicity, which could be reverted by ILT2 blockade suggesting a control of the immune effector cell activity at least by this miR. The identification of two novel HLA-G-regulatory miRs extends the number of HLA-G-relevant miRs tuning the HLA-G expression and might serve as future therapeutic targets.
Tumor escape is often associated with abnormalities in the surface expression of the human leukocyte antigen class I (HLA-I) antigens thereby limiting CD8 + cytotoxic T cell responses. This impaired HLA-I surface expression can be mediated by deficient expression of components of the antigen processing and presentation machinery (APM) due to epigenetic, transcriptional and/or post-transcriptional processes. Since a discordant mRNA and protein expression pattern of APM components including the peptide transporter associated with antigen processing 1 (TAP1) has been frequently described in tumors of distinct origin, a post-transcriptional control of APM components caused by microRNAs (miR) was suggested. Using an in silico approach, miR-200a-5p has been identified as a candidate miR binding to the 3ʹ untranslated region (UTR) of TAP1. Luciferase reporter assays demonstrated a specific binding of miR-200a-5p to the TAP1 3ʹ-UTR. Furthermore, the miR-200a-5p expression is inversely correlated with the TAP1 protein expression in HEK293T cells and in a panel of melanoma cell lines as well as in primary melanoma lesions. High levels of miR-200a-5p expression were associated with a shorter overall survival of melanoma patients. Overexpression of miR-200a-5p reduced TAP1 levels, which was accompanied by a decreased HLA-I surface expression and an enhanced NK cell sensitivity of melanoma cells. These data show for the first time a miRmediated control of the peptide transporter subunit TAP1 in melanoma thereby leading to a reduced HLA-I surface expression accompanied by an altered immune recognition and reduced patients' survival.
Background: miR-152 regulates HLA-G and HLA-C, which act inhibitory to NK and T cells, thereby altering the immunogenicity of tumors. Results: Applying a proteome-based approach, novel miR-152 targets were identified, e.g. anti-apoptotic 14-3-3 overexpressed in certain tumors.
Conclusion:The known tumor-suppressive miR-152 regulates 14-3-3, thereby enhancing the sensitivity of tumor cells for apoptosis. Significance: miR-152 exerts a dual role by altering the immunogenicity and the tumorigenicity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.