Background Diffuse Midline Glioma (DMG) with the H3K27M mutation is a lethal childhood brain cancer, with patients rarely surviving 2 years from diagnosis. Methods We conducted a multi-site Phase 1 trial of the imipridone ONC201 for children with H3K27M-mutant glioma (NCT03416530). Patients enrolled on Arm D of the trial (n=24) underwent serial lumbar puncture for cell-free tumor DNA (cf-tDNA) analysis and patients on all arms at the University of Michigan underwent serial plasma collection. We performed digital droplet polymerase chain reaction (ddPCR) analysis of cf-tDNA samples and compared variant allele fraction (VAF) to radiographic change (maximal 2D tumor area on MRI). Results Change in H3.3K27M VAF over time (“VAF delta”) correlated with prolonged PFS in both CSF and plasma samples. Non-recurrent patients that had a decrease in CSF VAF displayed a longer progression free survival (p=0.049). Decrease in plasma VAF displayed a similar trend (p=0.085). VAF “spikes” (increase of at least 25%) preceded tumor progression in 8/16 cases (50%) in plasma and 5/11 cases (45.4%) in CSF. In individual cases, early reduction in H3K27M VAF predicted long-term clinical response (>1 year) to ONC201, and did not increase in cases of later-defined pseudo-progression. Conclusion Our work demonstrates the feasibility and potential utility of serial cf-tDNA in both plasma and CSF of DMG patients to supplement radiographic monitoring. Patterns of change in H3K27M VAF over time demonstrate clinical utility in terms of predicting progression and sustained response and possible differentiation of pseudo-progression and pseudo-response.
Purpose of Review: H3K27M is a frequent histone mutation within diffuse midline gliomas and is associated with a dismal prognosis, so much so that the 2016 CNS WHO classification system created a specific category of "Diffuse Midline Glioma, H3K27M-mutant". Here we outline the latest pre-clinical data and ongoing current clinical trials that target H3K27M, as well as explore diagnosis and treatment monitoring by serial liquid biopsy. RecentFindings: Multiple epigenetic compounds have demonstrated efficacy and on-target effects in pre-clinical models. The imipridone ONC201 and the IDO1 inhibitor indoximod have demonstrated early clinical activity against H3K27M-mutant gliomas. Liquid biopsy of cerebrospinal fluid has shown promise for clinical use in H3K27M-mutant tumors for diagnosis and monitoring treatment response.Summary: While H3K27M has elicited a widespread platform of pre-clinical therapies with promise, much progress still needs to be made to improve outcomes for diffuse midline glioma patients. We present current treatment and monitoring techniques as well as novel approaches in identifying and targeting H3K27M-mutant gliomas.
Purpose: Pediatric high-grade glioma (pHGG) diagnosis portends poor prognosis and therapeutic monitoring remains difficult. Tumors release cell-free tumor DNA (cf-tDNA) into cerebrospinal fluid (CSF), allowing for potential detection of tumor-associated mutations by CSF sampling. We hypothesized that direct, electronic analysis of cf-tDNA with a handheld platform (Oxford Nanopore MinION) could quantify patient-specific CSF cf-tDNA variant allele fraction (VAF) with improved speed and limit of detection compared with established methods. Experimental Design: We performed ultra-short fragment (100–200 bp) PCR amplification of cf-tDNA for clinically actionable alterations in CSF and tumor samples from patients with pHGG (n = 12) alongside nontumor CSF (n = 6). PCR products underwent rapid amplicon-based sequencing by Oxford Nanopore Technology (Nanopore) with quantification of VAF. Additional comparison to next-generation sequencing (NGS) and droplet digital PCR (ddPCR) was performed. Results: Nanopore demonstrated 85% sensitivity and 100% specificity in CSF samples (n = 127 replicates) with 0.1 femtomole DNA limit of detection and 12-hour results, all of which compared favorably with NGS. Multiplexed analysis provided concurrent analysis of H3.3A (H3F3A) and H3C2 (HIST1H3B) mutations in a nonbiopsied patient and results were confirmed by ddPCR. Serial CSF cf-tDNA sequencing by Nanopore demonstrated correlation of radiological response on a clinical trial, with one patient showing dramatic multi-gene molecular response that predicted long-term clinical response. Conclusions: Nanopore sequencing of ultra-short pHGG CSF cf-tDNA fragments is feasible, efficient, and sensitive with low-input samples thus overcoming many of the barriers restricting wider use of CSF cf-tDNA diagnosis and monitoring in this patient population.
Pediatric high-grade gliomas are the leading cause of brain cancer-related death in children. High-grade gliomas include clinically and molecularly distinct subtypes that stratify by anatomical location into diffuse midline gliomas (DMG) such as diffuse intrinsic pontine glioma (DIPG) and hemispheric high-grade gliomas. Neuronal activity drives high-grade glioma progression both through paracrine signaling(1,2) and direct neuron-to-glioma synapses(3-5). Glutamatergic, AMPA receptor-dependent synapses between neurons and malignant glioma cells have been demonstrated in both pediatric(3) and adult high-grade gliomas(4), but neuron-to-glioma synapses mediated by other neurotransmitters remain largely unexplored. Using whole-cell patch clamp electrophysiology, in vivo optogenetics and patient-derived glioma xenograft models, we have now identified functional, tumor-promoting GABAergic neuron-to-glioma synapses mediated by GABAA receptors in DMGs. GABAergic input has a depolarizing effect on DMG cells due to NKCC1 expression and consequently elevated intracellular chloride concentration in DMG tumor cells. As membrane depolarization increases glioma proliferation(3), we find that the activity of GABAergic interneurons promotes DMG proliferation in vivo. Increasing GABA signaling with the benzodiazepine lorazepam, a positive allosteric modulator of GABAA receptors commonly administered to children with DMG for nausea or anxiety, increases GABAA receptor conductance and increases glioma proliferation in orthotopic xenograft models of DMG. Conversely, levetiracetam, an anti-epileptic drug that attenuates GABAergic neuron-to-glioma synaptic currents, reduces glioma proliferation in patient-derived DMG xenografts and extends survival of mice bearing DMG xenografts. Concordant with gene expression patterns of GABAA receptor subunit genes across subtypes of glioma, depolarizing GABAergic currents were not found in hemispheric high-grade gliomas. Accordingly, neither lorazepam nor levetiracetam influenced the growth rate of hemispheric high-grade glioma patient-derived xenograft models. Retrospective real-world clinical data are consistent with these conclusions and should be replicated in future prospective clinical studies. Taken together, these findings uncover GABAergic synaptic communication between GABAergic interneurons and diffuse midline glioma cells, underscoring a tumor subtype-specific mechanism of brain cancer neurophysiology with important potential implications for commonly used drugs in this disease context.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.