The punt kick is a fundamental skill used in several team sports; however, there has been a lack of research on how fatigue affects its technique. The purpose of this study was to determine the effects of short-term fatigue on punt-kicking performance. Eight elite and sub-elite Australian Football players performed maximal drop punt kicks on their preferred leg prior to, during and after a match-specific fatigue protocol. Optotrak Certus collected kinematic data from kick foot toe-off until ball contact. Repeated-measures analysis of variance showed a significant increase in 20 m sprint times after each short-term protocol, indicating fatigue. Foot speed did not significantly change with fatigue; however, increases in the range of motion at the pelvis and kicking thigh, along with increases in kicking thigh angular velocity, occurred. For the support leg, maximum knee flexion angular velocity increased while there was greater flexion found at the knee and hip, and greater range of motion at the knee. Players are able to make kinematic adaptations in order to maintain foot speed while punting for maximal distance after short-term efforts.
Gymnastics vaulting relies on a specialized take-off board for propulsion during the take-off phase of the vault. There is little information on the vault board and its behaviour. The aim of this study was to characterize the behaviour of the vault board during handspring drill take-offs of young male gymnasts (n = 36). The side of the top surface of the vault board and the wooden base were marked with three reflective markers, placed at the end of the vault board nearest the vault table and the centres of the two rearmost coil springs. The vault board surface was divided into two areas, rear and middle, based on marker location. The gymnasts' groups were determined from the location of the gymnast's lateral malleolus at vault board contact. Landings with the malleolus directly above or behind the rearmost marker were considered rear landings; landings with the malleolus forward of the rearmost marker were considered middle landings. Marker movements were automatically digitized and the right malleolus was hand digitized at 120 Hz. The maximum vertical displacement, vertical deflection time, and vertical velocity at take-off of the vault board markers did not differ statistically between board contact groups (all p > 0.05). The lateral malleolus velocity components also did not differ between board contact groups. Some low to moderately strong correlations were observed between the various marker displacements, durations and take-off velocities. Modest correlations were obtained between board markers and right malleolus velocities. The results indicate that foot contact on the vault board, as defined here, did not result in differences in board marker behaviour or right lateral malleolus velocities. This information does not support the idea that vault board contacts at the rear of the vault board are worse than contacts near the middle of the vault board. More research is needed to ascertain the role of the vault board's vibration characteristics to whole body actions that are observed in the subsequent preflight phase.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.