Laser-shock-induced spall failure is studied in thin aluminum targets at strain rates from 2 to 5 · 10 6 s -1 . Targets were prepared from high-purity aluminum in the recrystallized condition and a low-impurity aluminum alloy containing 3 wt pct magnesium in both recrystallized and cold-rolled conditions. The effects of material and microstructure on spall fracture morphology are investigated. Recrystallized pure aluminum produced spall fracture surfaces characterized by transgranular ductile dimpling. Recrystallized aluminum-magnesium alloy with a 50-lm grain size produced less ductile spall surfaces, which were dominated by transgranular fracture, with some isolated transgranular ductile dimpling at fast strain rates. Transgranular ductile dimpling regions disappeared in recrystallized alloy specimens with a 23-lm grain size tested at faster rates. Cold-rolled alloy material produced spall failure surfaces consisting of brittle intergranular and transgranular fractures. Measured spall strength increases with increasing ductile fracture character. Spall failure preferentially follows grain boundaries, making grain size an important factor in spall fracture surface character.
Material microstructure is a significant determinant of the tensile stress at which materials fail. Using a high-energy laser to drive shocks in thin slabs, we have explored the role material microstructure plays on the spall strength of high-purity and alloyed aluminum at strain rates of (2–7.5)×106s−1. Slabs of pure recrystallized Al and recrystallized or cold worked Al+3wt% Mg were shock driven using the Z-Beamlet Laser at Sandia National Laboratories. Velocity interferometer measurements determined the spall strength of the materials, and postshot target analysis explored the microscopic fracture morphology. We observed the greatest spall strength for large-grained, recrystallized high-purity aluminum, with the dominant failure mode being ductile and transgranular. We observe for the first time at these strain rates fracture features for a fine-grained Al+3wt% Mg that were a combination of brittle intergranular and ductile transgranular fracture types. Postshot analysis of target cross sections and hydrocode simulations indicate that this mixed-mode failure results from spall dynamics occurring on spatial scales on the order of the grain size. Differences in spall strength between these Al samples were experimentally significant and correlate with the damage morphologies observed.
Articles you may be interested inHigh repetition rate laser-induced breakdown spectroscopy using acousto-optically gated detection Rev. Sci. Instrum. 85, 073104 (2014) This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Abstract. We conducted laser-induced spall experiments aimed at studying how a material's micro structure affects the tensile fracture characteristics at high strain rates (>10* s''). We used the ZBeamlet Laser at Sandia National Laboratory to drive shocks and to measure the spall strength of aluminum targets with various microstructures. The targets were recrystallized, high-purity aluminum (Al-HP RX), recrystallized aluminum + 3 wt.% magnesium (Al-3Mg RX), and cold-worked aluminum + 3 wt.% magnesium (Al-3Mg CW). The Al-3Mg RX and Al-3Mg CW are used to explore the roles that solid-solution alloying and cold-work strengthening play in the spall process. Using a line-VISAR (Velocity Interferometer System for Any Reflector) and analysis of recovered samples, we were able to measure spall strength and determine failure morphology in these targets. We find that the spall strength is highest for Al-HP RX. Analysis reveals that material grain size plays a vital role in the fracture morphology and spall strength results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.