Stabilization and fusion of the lumbar spine may be performed by using various anterior and posterior surgical techniques and a wide range of devices, including screws, spinal wires, artificial ligaments, vertebral cages, and artificial disks. Because spinal procedures are increasingly common, such devices are seen more and more often in everyday radiologic practice. For evaluation of the postoperative spine, radiography is the modality most commonly used. Computed tomography and magnetic resonance (MR) imaging may be useful alternatives, but MR imaging of the postoperative spine is vulnerable to metal-induced artifacts. For an accurate postoperative assessment of spinal instrumentation and of any complications, it is important that radiologists be familiar with the normal imaging appearances of the lumbar spine after stabilization, fusion, and disk replacement with various techniques and devices.
Study design: Systematic review.Objectives: (1) Does brace treatment compared with observation of curves lead to lower rates of surgery and failure for patients with idiopathic scoliosis? (2) Does brace treatment compared with observation of curves lead to better quality of life outcomes for patients with idiopathic scoliosis? (3) Does brace treatment compared with observation of curves lead to improved curve angle for patients with idiopathic scoliosis?Methods: A systematic review of the English-language literature was undertaken for articles published between 1970 and December 2010. Electronic databases and reference lists of key articles were searched to identify studies comparing brace treatment with observation of curves in patients with idiopathic scoliosis. Two independent reviewers assessed the strength of evidence using the GRADE criteria assessing quality, quantity, and consistency of results. Disagreements were resolved by consensus.Results: We identified eight studies meeting our inclusion criteria. The pooled studies comparing surgical rates between observation and brace treatment showed no statistical significance (P = .65). One study showed a statistically significant difference in failure rate between observation (45%) and brace (15%) treatment (P < .001). Findings with respect to posttreatment quality of life at 2 years were inconsistent. Two studies favored the brace group, and one the observation group using the SRS-22 and Quality of Life Profile for Spine Deformities (QLPSD) measures. Two of three studies reporting pretreatment and posttreatment curve angles demonstrated a treatment effect favoring bracing; however, statistical significance for these treatment effects could not be calculated. One study described a treatment effect favoring observation but the differences were not statistically significant (P = .26).Conclusion: This systematic review identified and summarized only the highest level of evidence by limiting to comparison studies. Case-series were not included. This allowed for comparisons among the same patient populations. Findings with respect to surgical rates, quality of life, and change in curve angle demonstrate either no significant differences or inconsistent findings favoring one treatment or the other. If bracing does not cause a positive treatment effect, then its rejection will lead to significant savings for healthcare providers and purchasers. Given the very low to low level of evidence and inconsistent findings, a randomized trial is necessary to determine if bracing should be recommended.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.