Polymerizations of phenylamines with a disulfide transfer reagent to yield poly [N,N-(phenylamino) disulfides] (poly-NADs) were investigated due to their unique repeat units that resulted in conjugation along the backbone that was perturbed by the aromatic rings and gave different colors for the polymers. These polymers were synthesized from 10 different anilines and sulfur monochloride in a step-growth polymerization. The polymers were characterized by nuclear magnetic resonance spectroscopy, size exclusion chromatography-multiangle light scattering, and UV−vis spectroscopy. These polymers possessed a polymeric backbone solely consisting of nitrogen and sulfur [−N(R)SS−], which was conjugated and yielded polymers of moderate molecular weight. Most notably, these polymers were an array of colors ranging from pale yellow to a deep purple depending on the substitution of the aromatic ring. The more electron-poor systems produced lighter yellow polymers, while the electron-rich systems gave orange, green, red, and even purple polymers.
Barium titanate (BTO) is a ferroelectric material used in capacitors because of its high bulk dielectric constant. However, the impact of the size of BTO on its dielectric constant is not yet fully understood and is highly contested. Here, we present an investigation into the dielectric constant of BTO nanoparticles with diameters ranging between 50 and 500 nm. BTO nanoparticles were incorporated into acrylonitrile butadiene styrene and injection molded into parallel plate capacitors, which were used to determine nanocomposite dielectric constants. The dielectric constants of BTO nanoparticles were obtained by combining experimental measurements with computational results from COMSOL simulations of ABS-matrix nanocomposites containing BTO. The dielectric constant of BTO was observed to be relatively constant at nanoparticle diameters as small as 200 nm but sharply declined at smaller nanoparticle sizes. These results will be useful in the development of improved energy storage and power conditioning systems utilizing BTO nanoparticles. Graphical abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.