Incidence of nonunion following long bone fracture fixation and spinal fusion procedures is increasing, and very costly for patients and the medical system. Direct current electrical stimulation has shown success as an adjunct therapy to stimulate bone healing and increase surgery success rates, though drawbacks of current devices and implantable battery packs have limited widespread use. Energy harvesting utilizing piezoelectric materials has been widely studied for powering devices without a battery, and a preclinical animal study has shown efficacy of a piezocomposite spinal fusion implant resulting in faster, more robust fusion. Most piezoelectric energy harvesters operate most effectively at high frequencies, limiting power generation from loads experienced by orthopedic implants during human motion. This work characterizes the efficient power generation capability of a novel composite piezoelectric material under simulated walking loads. Building on compliant layer adaptive composite stacks (CLACS), the power generation of mixed-mode CLACS (MMCLACS) is defined. Utilizing poling direction to capitalize on in-plane strain generation due to compliant layer expansion, MMCLACS significantly increased power output compared to a standard piezo stack. The combination of radial and through-thickness poled piezoelectric elements within a stack to create MMCLACS significantly increases power generation under low frequency dynamic loads. This technology can be adapted to a variety of architectures and assembled as a load-bearing energy harvester within current implants. MMCLACS integrated with implants would provide enough power to deliver bone healing electrical stimulation directly to the fusion site, decreasing nonunion rates, and also could provide quantitative assessment of healing progression through load sensing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.