BioOne Complete (complete.BioOne.org) is a full-text database of 200 subscribed and open-access titles in the biological, ecological, and environmental sciences published by nonprofit societies, associations, museums, institutions, and presses.
Summary Climate extremes and their physical impacts – including droughts, fires, floods, heat waves, storm surges and tropical cyclones – are important structuring forces in riverine ecosystems. Climate change is expected to increase the future occurrence of extremes, with potentially devastating effects on rivers and streams. We synthesise knowledge of extremes and their impacts on riverine ecosystems in Australia, a country for which projected changes in event characteristics reflect global trends. Hydrologic extremes play a major structuring role in river ecology across Australia. Droughts alter water quality and reduce habitat availability, driving organisms to refugia. Extreme floods increase hydrological connectivity and trigger booms in productivity, but can also alter channel morphology and cause disturbances such as hypoxic blackwater events. Tropical cyclones and post‐cyclonic floods damage riparian vegetation, erode stream banks and alter water quality. Cyclone‐induced delivery of large woody debris provides important instream habitat, although the wider ecological consequences of tropical cyclones are uncertain. Wildfires destroy catchment vegetation and expose soils, increasing inputs of fine sediment and nutrients to streams, particularly when followed by heavy rains. Research on the impacts of heat waves and storm surges is scarce, but data on temperature and salinity tolerances, respectively, may provide some insight into ecological responses. We identify research gaps and hypotheses to guide future research on the ecology of extreme climate events in Australia and beyond. A range of phenomenological, experimental and modelling approaches is needed to develop a mechanistic understanding of the ecological impact of extreme events and inform prediction of responses to future change.
The management of freshwater ecosystems is usually targeted through the regulation of water quantity (limiting diversions and providing environmental flows) and regulation of water quality (setting limits or targets for constituent concentrations). Climate change is likely to affect water quantity and quality in multiple ways and the future management of freshwater ecosystems requires predictions of plausible future conditions. We use a suite of ecologically-relevant hydrological indicators to determine the significance of projected climate-driven hydrological changes in the Upper Murrumbidgee River Catchment in south eastern Australia in relation to river regulation. We also determine the possible water quality changes (in relation to guidelines for aquatic ecosystem protection) associated with the climate change projections to identify the combined effects of hydrological and water quality changes. The results of this study suggest that river regulation has resulted in greater changes to ecologically-relevant streamflow characteristics than climate change scenarios that involve a 1 and 2°C temperature rise in the Upper Murrumbidgee River Catchment. In contrast to the projected hydrological changes, Bayesian Network modelling suggests very small changes to violations of water quality thresholds designed to protect aquatic ecosystems as a result of climate change. By identifying key components of the flow and water quality regimes that may be affected by climate change, we are able to provide managers with information that assists in developing adaptation initiatives.
Declining water quality and ecological condition is a typical trend for rivers and streams worldwide as human demands for water resources increase. Managing these natural resources sustainably is a key responsibility of governments. Effective water management policies require information derived from long-term monitoring and evaluation. Biological monitoring and assessment are critical for management because bioassessment integrates the biological, physical and chemical features of a waterbody. Investment in nationally coordinated riverine bioassessment in Australia has almost ceased and the foci of management questions are on more localised assessments. However, rivers often span political and administrative boundaries, and their condition may be best protected and managed under national policies, supported by a coordinated national bioassessment framework. We argue that a nationally coordinated program for the bioassessment of riverine health is an essential element of sustainable management of a nation’s water resources. We outline new techniques and research needed to streamline current arrangements to meet present-day and emerging challenges for coordinating and integrating local, regional and national bioassessment activities. This paper draws on international experience in riverine bioassessment to identify attributes of successful broad-scale bioassessment programs and strategies needed to modernise freshwater bioassessment in Australia and re-establish national broad-scale focus.
Globally, the provision of groundwater‐supported ecosystem services is threatened by climate change, water extraction, and other activities that alter groundwater regimes (defined as temporal dynamics in groundwater pressures, storage, and levels). Research on how altered groundwater regimes affect the ecology and ecosystem services of diverse groundwater‐dependent ecosystems (GDEs) is currently fragmented with little integration across different GDEs, hampering our ability to understand and manage ecological responses to anthropogenic changes to groundwater regimes. To address this, we present a framework for assessing ecological responses to groundwater regime alteration (FERGRA). FERGRA is a logical approach to investigating how alterations to groundwater regimes change the timing, variability, duration, frequency, and magnitude of groundwater connections to different GDEs, in turn affecting their ecological processes and ecosystem service provision. Using FERGRA, multiple GDEs can be assessed concurrently, optimizing their integrated management. Unifying the concepts of ecological responses to altered groundwater regimes and groundwater connections of different GDEs across the landscape, FERGRA provides a framework for (a) organizing the currently fragmented research on GDEs to better identify commonalities and knowledge gaps, (b) formulating and testing hypotheses for quantifying ecological responses to groundwater regime alteration in GDEs to derive general principles to guide research and management, and (c) facilitating assessments of the trade‐offs between the benefits of groundwater extraction (e.g., to support mining and agriculture) versus conservation of GDEs to protect other ecosystem services.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.