The net reaction of monomeric Cp'(2)CeH [Cp' = 1,3,4-(Me(3)C)(3)(C(5)H(2))] in C(6)D(6) with C(6)F(6) is Cp'(2)CeF, H(2), and tetrafluorobenzyne. The pentafluorophenylmetallocene, Cp'(2)Ce(C(6)F(5)), is formed as an intermediate that decomposes slowly to Cp'(2)CeF and C(6)F(4) (tetrafluorobenzyne), and the latter is trapped by the solvent C(6)D(6) as a [2+4] cycloadduct. In C(6)F(5)H, the final products are also Cp'(2)CeF and H(2), which are formed from the intermediates Cp'(2)Ce(C(6)F(5)) and Cp'(2)Ce(2,3,5,6-C(6)F(4)H) and from an unidentified metallocene of cerium and the [2+4] cycloadducts of tetra- and trifluorobenzyne with C(6)D(6). The hydride, fluoride, and pentafluorophenylmetallocenes are isolated and characterized by X-ray crystallography. DFT(B3PW91) calculations have been used to explore the pathways leading to the observed products of the exergonic reactions. A key step is a H/F exchange reaction which transforms C(6)F(6) and the cerium hydride into C(6)F(5)H and Cp'(2)CeF. This reaction starts by an eta(1)-F-C(6)F(5) interaction, which serves as a hook. The reaction proceeds via a sigma bond metathesis where the fluorine ortho to the hook migrates toward H with a relatively low activation energy. All products observed experimentally are accommodated by pathways that involve C-F and C-H bond cleavages.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.