This work reports the synthesis of formo-phenolic resins containing four catecholamide (CAM) moieties with admixture of phenol, catechol or resorcinol. These chelating resins have been developed to selectively extract U(VI) from seawater. This media is a challenging environment due to a pH around 8.2 and a large excess of alkaline and earth-alkaline cations. From the various sorption experiments investigated, the results indicate that the synthesized material exhibit good sorbent properties for U(VI) with uptake capacity about 50 mg/g for the more promising resins with a pronounced selectivity for uranium even under saline conditions. Thermodynamic and kinetic adsorption data were determined for the best resin (Langmuir adsorption model and pseudo-second order model).
What prompted you to investigate this topic/problem?Uranium extraction from unconventional resources like in seawater constitutes an important secondary source of uranium as well as a challenge considering the complexity of this media. Therefore, it appears challenging to propose efficient solution and solid-liquid extraction is one of the most promising processes for this purpose. Only Japanese, Chinese and Americans had proposed U extraction processes on the use of resin and that to our knowledge, Europe and France in particular had not so far proposed and investigated organic materials to meet this challenge.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.