The presence of excess hydrogen at the interface between a metal substrate and a protective oxide can cause blistering and spallation of the scale. However, it remains unclear how nanoscale bubbles manage to reach the critical size in the first place. Here, we perform in situ environmental transmission electron microscopy experiments of the aluminium metal/oxide interface under hydrogen exposure. It is found that once the interface is weakened by hydrogen segregation, surface diffusion of Al atoms initiates the formation of faceted cavities on the metal side, driven by Wulff reconstruction. The morphology and growth rate of these cavities are highly sensitive to the crystallographic orientation of the aluminium substrate. Once the cavities grow to a critical size, the internal gas pressure can become great enough to blister the oxide layer. Our findings have implications for understanding hydrogen damage of interfaces.
Hydrogen can facilitate the detachment of protective oxide layer off metals and alloys. The degradation is usually exacerbated at elevated temperatures in many industrial applications; however, its origin remains poorly understood. Here by heating hydrogenated aluminium inside an environmental transmission electron microscope, we show that hydrogen exposure of just a few minutes can greatly degrade the high temperature integrity of metal–oxide interface. Moreover, there exists a critical temperature of ∼150 °C, above which the growth of cavities at the metal–oxide interface reverses to shrinkage, followed by the formation of a few giant cavities. Vacancy supersaturation, activation of a long-range diffusion pathway along the detached interface and the dissociation of hydrogen-vacancy complexes are critical factors affecting this behaviour. These results enrich the understanding of hydrogen-induced interfacial failure at elevated temperatures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.