Due to its direct band gap and light mass, the recently synthesized triazine-based, graphitic carbon nitride (TGCN) is considered a promising material for future microelectronics. However, despite the structural similarity with completely planar carbon-only graphene, TGCN sheets are different because of the presence of buckling distortions making the TGCN sheets nonplanar. In this article, we show that the sufficiently strong coupling between the unoccupied molecular orbitals (UMOs) with occupied molecular orbitals (OMOs) leads to pseudo Jahn–Teller distortions (PJT) and consequent buckling of TGCN layers. Doping the TGCN with doubly charged cations such as Be2+ can suppress the PJT distortions resulting in a completely planar structure. A proper understanding of the mechanism of the PJT effect in TGCN is crucial for tailoring properties that are relevant for practical applications.
Molecular simulations have the potential to advance the understanding of how the structure of organic materials can be engineered through the choice of chemical components but are limited by computational costs. The computational costs can be significantly lowered through the use of modeling approximations that capture the relevant features of a system, while lowering algorithmic complexity or by decreasing the degrees of freedom that must be integrated. Such methods include coarse-graining techniques, approximating long-range electrostatics with short-range potentials, and the use of rigid bodies to replace flexible bonded constraints between atoms. To understand whether and to what degree these techniques can be leveraged to enhance the understanding of planar organic molecules, we investigate the morphologies predicted by molecular dynamic simulations using simplified molecular models of perylene and perylothiophene. Approximately, 10 000 wall-clock hours of graphics processing unit-accelerated simulations are performed using both rigid and flexible models to test their efficiency and predictive capability with the two chemistries. We characterize the 1191 resulting morphologies using simulated X-ray diffraction and cluster analysis to distinguish structural transitions, summarized by four phase diagrams. We find that the morphologies generated by the rigid model of perylene and perylothiophene match with those generated by the flexible model. We find that ordered, hexagonally packed columnar phases are thermodynamically favored over a wide range of densities and temperatures for both molecules, in qualitative agreement with experiments. Furthermore, we find the rigid model to be more computationally efficient for both molecules, providing more samples per second and shorter times to equilibrium. Owing to the structural accuracy and improved computational efficiency of modeling polyaromatic groups as rigid bodies, we recommend this modeling choice for enhancing the sampling in polyaromatic molecular simulations.
Evaluating new, promising organic molecules to make next-generation organic optoelectronic devices necessitates the evaluation of charge carrier transport performance through the semi-conducting medium. In this work, we utilize quantum chemical calculations (QCC) and kinetic Monte Carlo (KMC) simulations to predict the zero-field hole mobilities of ∼100 morphologies of the benchmark polymer poly(3-hexylthiophene), with varying simulation volume, structural order, and chain-length polydispersity. Morphologies with monodisperse chains were generated previously using an optimized molecular dynamics force-field and represent a spectrum of nanostructured order. We discover that a combined consideration of backbone clustering and system-wide disorder arising from side-chain conformations are correlated with hole mobility. Furthermore, we show that strongly interconnected thiophene backbones are required for efficient charge transport. This definitively shows the role “tie-chains” play in enabling mobile charges in P3HT. By marrying QCC and KMC over multiple length- and time-scales, we demonstrate that it is now possible to routinely probe the relationship between molecular nanostructure and device performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.