We investigate several aspects of black hole formation in failing core-collapse supernovae using 1D general-relativistic hydrodynamic simulations. We use the open-source code GR1D and incorporate into it nucleon-nucleon Bremsstrahlung, a crucial neutrino pair-production channel. We focus on how various thermal effects can influence the postbounce supernova evolution towards black hole formation. By performing simulations with and without nucleon-nucleon Bremsstrahlung, we investigate the sensitivity of black hole formation to thermal support in the protoneutron star. We also investigate delayed black hole formation by artificially driving explosions in an extreme model where the protoneutron star is initially thermally supported above the maximum baryonic cold neutron star mass but then collapses to a black hole after neutrino cooling removes sufficient thermal support.11th Symposium on Nuclei in the Cosmos
We study the merger of binary neutron stars using different realistic, microphysical nuclear equations of state, as well as incorporating magnetic field and neutrino cooling effects. In particular, we concentrate on the influence of the equation of state on the gravitational wave signature and also on its role, in combination with cooling and electromagnetic effects, in determining the properties of the hypermassive neutron star resulting from the merger, the production of neutrinos, and the characteristics of ejecta from the system. The ejecta we find are consistent with other recent studies that find soft equations of state produce more ejecta than stiffer equations of state. Moreover, the degree of neutron richness increases for softer equations of state. In light of reported kilonova observations (associated to GRB 130603B and GRB 060614) and the discovery of relatively low abundances of heavy, radioactive elements in deep sea deposits (with respect to possible production via supernovae), we speculate that a soft EoS might be preferred-because of its significant production of sufficiently neutron rich ejecta-if such events are driven by binary neutron star mergers. We also find that realistic magnetic field strengths, obtained with a sub-grid model tuned to capture magnetic amplification via the Kelvin-Helmholtz instability at merger, are generally too weak to affect the gravitational wave signature post-merger within a time scale of ≈ 10 ms but can have subtle effects on the post-merger dynamics. Contents
We present the new open-source spherically symmetric general-relativistic (GR) hydrodynamics code GR1D. It is based on the Eulerian formulation of GR hydrodynamics (GRHD) put forth by Romero-Ibáñez-Gourgoulhon and employs radial-gauge, polar-slicing coordinates in which the 3+1 equations simplify substantially. We discretize the GRHD equations with a finite-volume scheme, employing piecewise-parabolic reconstruction and an approximate Riemann solver. GR1D is intended for the simulation of stellar collapse to neutron stars and black holes and will also serve as a testbed for modeling technology to be incorporated in multi-D GR codes. Its GRHD part is coupled to various finite-temperature microphysical equations of state in tabulated form that we make available with GR1D. An approximate deleptonization scheme for the collapse phase and a neutrino-leakage/heating scheme for the postbounce epoch are included and described. We also derive the equations for effective rotation in 1D and implement them in GR1D. We present an array of standard test calculations and also show how simple analytic equations of state in combination with presupernova models from stellar evolutionary calculations can be used to study qualitative aspects of black hole formation in failing rotating core-collapse supernovae. In addition, we present a simulation with microphysical equations of state and neutrino leakage/heating of a failing corecollapse supernova and black hole formation in a presupernova model of a 40 M zero-age main-sequence star. We find good agreement on the time of black hole formation (within 20%) and last stable protoneutron star mass (within 10%) with predictions from simulations with full Boltzmann neutrino radiation hydrodynamics.
We present a first simulation of the post-merger evolution of a black hole-neutron star binary in full general relativity using an energy-integrated general relativistic truncated moment formalism for neutrino transport. We describe our implementation of the moment formalism and important tests of our code, before studying the formation phase of an accretion disk after a black hole-neutron star merger. We use as initial data an existing general relativistic simulation of the merger of a neutron star of mass 1.4M with a black hole of mass 7M and dimensionless spin χBH = 0.8. Comparing with a simpler leakage scheme for the treatment of the neutrinos, we find noticeable differences in the neutron to proton ratio in and around the disk, and in the neutrino luminosity. We find that the electron neutrino luminosity is much lower in the transport simulations, and that both the disk and the disk outflows are less neutron-rich. The spatial distribution of the neutrinos is significantly affected by relativistic effects, due to large velocities and curvature in the regions of strongest emission. Over the short timescale evolved, we do not observe purely neutrino-driven outflows. However, a small amount of material (3 × 10 −4 M ) is ejected in the polar region during the circularization of the disk. Most of that material is ejected early in the formation of the disk, and is fairly neutron rich (electron fraction Ye ∼ 0.15 − 0.25). Through r-process nucleosynthesis, that material should produce high-opacity lanthanides in the polar region, and could thus affect the lightcurve of radioactively powered electromagnetic transients. We also show that by the end of the simulation, while the bulk of the disk remains neutron-rich (Ye ∼ 0.15 − 0.2 and decreasing), its outer layers have a higher electron fraction: 10% of the remaining mass has Ye > 0.3. As that material would be the first to be unbound by disk outflows on longer timescales, and as composition evolution is slower at later times, the changes in Ye experienced during the formation phase of the disk could have an impact on nucleosynthesis outputs from neutrino-driven and viscously-driven outflows. Finally, we find that the effective viscosity due to momentum transport by neutrinos is unlikely to have a strong effect on the growth of the magnetorotational instability in the post-merger accretion disk.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.