Grain yield and semolina quality traits are essential selection criteria in durum wheat breeding. However, high phenotypic screening costs limit selection to relatively few breeding lines in late generations. This selection paradigm confers relatively low selection efficiency due to the advancement of undesirable lines into expensive yield trials for grain yield and quality trait testing. Marker-aided selection can enhance selection efficiency, especially for traits that are difficult or costly to phenotype. The aim of this study was to identify major quality trait quantitative trait loci (QTL) for marker-assisted selection (MAS) and to explore potential application of genomic selection (GS) in a durum wheat breeding program. In this study, genome-wide association mapping was conducted for five quality traits using 1184 lines from the North Dakota State University (NDSU) durum wheat breeding program. Several QTL associated with test weight, semolina color, and gluten strength were identified. Genomic selection models were developed and forward prediction accuracies of 0.27 to 0.66 were obtained for the five quality traits. Our results show the potential for grain and semolina quality traits to be selected more efficiently through MAS and GS with further refinement. Considerable opportunity exists to extend these techniques to other traits such as grain yield and agronomic characteristics, further improving breeding efficiency in durum cultivar development. Durum wheat (Triticum turgidum var. durum, 2n = 4x = 28, AABB), one of the first domesticated crops, is a staple food crop with an annual global production of
Durum wheat [ Triticum durum (Desf).] is mostly used to produce pasta, couscous, and bulgur. The quality of the grain and end-use products determine its market value. However, quality tests are highly resource intensive and almost impossible to conduct in the early generations in the breeding program. Modern genomics-based tools provide an excellent opportunity to genetically dissect complex quality traits to expedite cultivar development using molecular breeding approaches. This study used a panel of 243 cultivars and advanced breeding lines developed during the last 20 years to identify SNPs associated with 24 traits related to nutritional value and quality. Genome-wide association study (GWAS) identified a total of 179 marker–trait associations (MTAs), located in 95 genomic regions belonging to all 14 durum wheat chromosomes. Major and stable QTLs were identified for gluten strength on chromosomes 1A and 1B, and for PPO activity on chromosomes 1A, 2B, 3A, and 3B. As a large amount of unbalance phenotypic data are generated every year on advanced lines in all the breeding programs, the applicability of such a dataset for identification of MTAs remains unclear. We observed that ∼84% of the MTAs identified using a historic unbalanced dataset (belonging to a total of 80 environments collected over a period of 16 years) were also identified in a balanced dataset. This suggests the suitability of historic unbalanced phenotypic data to identify beneficial MTAs to facilitate local-knowledge-based breeding. In addition to providing extensive knowledge about the genetics of quality traits, association mapping identified several candidate markers to assist durum wheat quality improvement through molecular breeding. The molecular markers associated with important traits could be extremely useful in the development of improved quality durum wheat cultivars using marker-assisted selection (MAS).
Fusarium head blight (FHB) is one of the most destructive diseases in wheat worldwide. Breeding for FHB resistance is hampered by its complex genetic architecture, large genotype by environment interaction, and high cost of phenotype screening. Genomic selection (GS) is a powerful tool to enhance improvement of complex traits such as FHB resistance. The objectives of this study were to (1) investigate the genetic architecture of FHB resistance in a North Dakota State University (NDSU) hard red spring wheat breeding population, (2) test if the major QTL Fhb1 and Fhb5 play an important role in this breeding population; and (3) assess the potential of GS to enhance breeding efficiency of FHB resistance. A total of 439 elite spring wheat breeding lines from six breeding cycles were genotyped using genotyping-by-sequencing (GBS) and 102,147 SNP markers were obtained. Evaluation of FHB severity was conducted in 10 unbalanced field trials across multiple years and locations. One QTL for FHB resistance was identified and located on chromosome arm 1AL, explaining 5.3% of total phenotypic variation. The major type II resistance QTL Fhb1 only explained 3.1% of total phenotypic variation and the QTL Fhb5 was not significantly associated with FHB resistance in this breeding population. Our results suggest that integration of many genes with medium/minor effects in this breeding population should provide stable FHB resistance. Genomic prediction accuracies of 0.22–0.44 were obtained when predicting over breeding cycles in this study, indicating the potential of GS to enhance the improvement of FHB resistance.
Cadmium (Cd) is a heavy metal that has no known biological function and is toxic for many living organisms. The maximum level of Cd concentration allowed in the international market for wheat grain is 0.2 mg kg−1. Because phenotyping for Cd uptake is expensive and time consuming, molecular markers associated with genes conferring low Cd uptake would expedite selection and lead to the development of durum cultivars with reduced Cd concentrations. Here, we identified single nucleotide polymorphisms (SNPs) associated with a novel low Cd uptake locus in the durum experimental line D041735, which has hexaploid common wheat in its pedigree. Genetic analysis revealed a single major QTL for Cd uptake on chromosome arm 5BL within a 0.3 cM interval flanked by SNP markers. Analysis of the intervening sequence revealed a gene with homology to an aluminum-induced protein as a candidate gene. Validation and allelism tests revealed that the low Cd uptake gene identified in this study is different from the closely linked Cdu1-B gene, which also resides on 5BL. This study therefore showed that the durum experimental line D041735 contains a novel low Cd uptake gene that was likely acquired from hexaploid wheat.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.