Dopamine has long been implicated in impulsivity, but the precise mechanisms linking human variability in dopamine signaling to differences in impulsive traits remain largely unknown. Using a dual PET scan approach in healthy human volunteers with amphetamine and the D2/D3 ligand 18F-fallypride, we found that higher levels of trait impulsivity were predicted by diminished midbrain D2/D3 autoreceptor binding and greater amphetamine-induced DA release in the striatum, which was in turn associated with stimulant craving. Path analysis confirmed that the impact of decreased midbrain D2/D3 autoreceptor availability on trait impulsivity is mediated in part through its effect on stimulated striatal dopamine release.
Novelty-seeking personality traits are a major risk factor for the development of drug abuse and other unsafe behaviors. Rodent models of temperament indicate that high novelty responding is associated with decreased inhibitory autoreceptor control of midbrain dopamine neurons. It has been speculated that individual differences in dopamine functioning also underlie the personality trait of novelty seeking in humans. However, differences in the dopamine system of rodents and humans, as well as the methods for assessing novelty responding/seeking across species leave unclear to what extent the animal models inform our understanding of human personality. In the present study we examined the correlation between novelty-seeking traits in humans and
Background Although dystonia represents a major source of motor disability in Huntington’s Disease (HD), its pathophysiology remains unknown. Because recent animal studies indicate that loss of PARV+ striatal interneurons can cause dystonia, we investigated if loss of PARV+ striatal interneurons occurs during human HD progression, and thus might contribute to dystonia in HD. Methods We used immunolabeling to detect PARV+ interneurons in fixed sections, and corrected for disease-related striatal atrophy by expressing PARV+ interneuron counts in ratio to interneurons co-containing somatostatin and neuropeptide Y (whose numbers are unaffected in HD). Results At all symptomatic HD grades, PARV+ interneurons were reduced to less than 26% of normal abundance in rostral caudate. In putamen rostral to the level of globus pallidus, loss of PARV+ interneurons was more gradual, not dropping off to less than 20% of control until grade 2. Loss of PARV+ interneurons was even more gradual in motor putamen at globus pallidus levels, with no loss at grade 1, and steady grade-wise decline thereafter. Conclusions A large decrease in striatal PARV+ interneurons occurs in HD with advancing disease grade, with regional variation in the loss per grade. Given the findings of animal studies and the grade-wise loss of PARV+ striatal interneurons in motor striatum in parallel with the grade-wise appearance and worsening of dystonia, our results raise the possibility that loss of PARV+ striatal interneurons is a contributor to dystonia in HD.
Corticostriatal and thalamostriatal projections utilize glutamate as their neurotransmitter. Their influence on striatum is mediated, in part, by ionotropic AMPA-type glutamate receptors, which are heteromers composed of GluR1-4 subunits. While the cellular localization of AMPA-type subunits in the basal ganglia has been well characterized in rodents, the cellular localization of AMPA subunits in primate basal ganglia is not. We thus carried out immunohistochemical studies of GluR1-4 distribution in rhesus monkey basal ganglia in conjunction with characterization of each major neuron type. In striatum, about 65% of striatal neurons immunolabeled for GluR1, 75%-79% immunolabeled for GluR2 or GluR2/3, and only 2.5% possessed GluR4. All neurons the large size of cholinergic interneurons (mean diameter 26.1μm) were moderately labeled for GluR1, while all neurons in the size range of parvalbuminergic interneurons (mean diameter 13.8μm) were intensely rich in GluR1. Additionally, somewhat more than half of neurons in the size range of projection neurons (mean diameter 11.6μm) immunolabeled for GluR1, and about one third of these were very rich in GluR1. About half of neurons the size of cholinergic interneurons were immunolabeled for GluR2, and the remainder of the neurons that were immunolabeled for GluR2 coincided with projection neurons in size and shape (GluR2 diameter=10.7μm), indicating that the vast majority of striatal projection neurons possess immunodectible GluR2. Similar results were observed with GluR2/3 immunolabeling. Half of the neurons the size of cholinergic interneurons immunolabeled for GluR4 and seemingly all neurons in the size range of parvalbuminergic interneurons possessed GluR4. These results indicate that AMPA receptor subunit combinations for striatal projection neurons in rhesus monkey are similar to those for the corresponding neuron types in rodents, and thus their AMPA responses to glutamate likely to be similar to those demonstrated in rodents.
Symptomatic skeletal muscle metastasis from esophageal adenocarcinoma is rare. Here we report the case of a 49-year-old man who presented with right thigh pain, and was found to have symptomatic psoas muscle metastasis as the presentation of esophageal adenocarcinoma. The primary tumor was notable for signet ring cells (SRC), a poor prognostic indicator as well as a predictor of biologic aggressiveness. The patient passed away within 1 month of diagnosis due to disease progression, supporting the aggressiveness of such SRC esophageal lesions. Lastly, a literature review reveals a differential pattern of metastatic spread between esophageal adenocarcinomas and squamous cell carcinomas as regards muscle metastases. Skeletal muscle metastases are more likely to be due to esophageal adenocarcinoma, whereas myocardial metastases are almost exclusively due to esophageal squamous cell carcinoma (ESCC). These differences may represent an example of the 'seed and soil' hypothesis of metastasis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.