SUMMARYPhytotoxicity and transfer of potentially toxic elements, such as cadmium (Cd) or barium (Ba), depend on the availability of these elements in soils and on the plant species exposed to them. With this study, we aimed to evaluate the effect of Cd and Ba application rates on yields of pea (Pisum sativum L.), sorghum (Sorghum bicolor L.), soybean (Glycine max L.), and maize (Zea mays L.) grown under greenhouse conditions in an Oxisol and an Entisol with contrasting physical and chemical properties, and to correlate the amount taken up by plants with extractants commonly used in routine soil analysis, along with transfer coefficients (Bioconcentration Factor and Transfer Factor) in different parts of the plants. Plants were harvested at flowering stage and measured for yield and Cd or Ba concentrations in leaves, stems, and roots. The amount of Cd accumulated in the plants was satisfactorily evaluated by both DTPA and Mehlich-3 (M-3). Mehlich-3 did not relate to Ba accumulated in plants, suggesting it should not be used to predict Ba availability. The transfer coefficients were specific to soils and plants and are therefore not recommended for direct use in risk assessment models without taking soil properties and group of plants into account.Index terms: soil pollution, transfer factor, bioconcentration factor.
RESUMO: TRANSFERÊNCIA DE CÁDMIO E BÁRIO EM PLANTAS CULTIVADAS EM SOLOS TROPICAIS
High levels of heavy metals in soils may impose serious impacts on terrestrial organisms. In Brazil, the prevention values for evaluating the ecological risk of these elements are based only on soil chemical analyses and/or on data from ecotoxicological assays performed in soils of temperate regions. However, the attributes of the Brazilian highly-weathered tropical soils can influence the availability of heavy metals for soil fauna, resulting in different toxic values. To provide more accurate ecotoxicological risk values for arsenic (As) in tropical soils, we assessed the impacts of sodium arsenate (NaHAsO·7HO) on the reproduction of earthworms (Eisenia andrei) and collembolans (Folsomia candida), as well as on As bioaccumulation and growth (weight loss) of E. andrei in a tropical artificial soil (TAS) and in an Oxisol. In TAS, As doses reduced the reproduction of the species and promoted weight loss of earthworms. On the other hand, the reproductions of the species as well as the earthworm growth were not altered by As in the Oxisol. The effective concentrations that reduce the reproduction of E. andrei and F. candida by 50 % (EC) obtained in TAS (22.7 and 26.1 mg of As kg of dry soil, respectively) were lower than those in the Oxisol (>135 mg kg, for both species). Although there was As bioaccumulation in earthworms in both soils, the internal concentrations in the earthworms were much higher in the oligochaetes exposed to arsenic in TAS. All these differences were attributed to the higher availability of As in the TAS, compared to the Oxisol, which increased the exposure of the species to the metal. The lower availability in the Oxisol was related to higher contents of type 1:1 silicate minerals and Fe and Al oxides and hydroxides, which strongly bind to As. These results highlight the importance of using tropical soils of humid regions to derive the Brazilian ecological risk prevention values for heavy metals, since the toxicity values are specific for these soils.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.