CD19-targeted chimeric antigen receptor-modified T cell (CAR-T cell) therapy has shown excellent antitumor activity in patients with relapsed/refractory B cell malignancies, with very encouraging response rates and outcomes. However, the late effects following this therapy remain unknown. Here we report late adverse eventsdefined as starting or persisting beyond 90 days after CART cell infusion-in patients who survived at least 1 year after therapy. The median duration of follow-up was 28.1 months (range, 12.5 to 62.6 months). At last follow-up, 73% of patients were still alive and 24% were in ongoing complete remission (CR). The most common late adverse event was hypogammaglobulinemia (IgG <400 mg/dL or i.v immunoglobulinm (IVIG) replacement, observed in 67% of the patients with available data. Infection density was .55 infection/100 days at risk (2.08 per patient-year). The majority (80%) of the infections were treated in the outpatient setting, and 5% necessitated admission to the intensive care unit (ICU). Subsequent malignancies occurred in 15% of patients, including 5% with myelodysplastic syndrome (MDS). Among patients with ongoing CR and with no MDS, 16% experienced prolonged cytopenia requiring transfusions or growth factor support. Graft-versus-host disease occurred in 3 of 15 patients (20%) who had undergone previous allogeneic hematopoietic cell transplantation. Most of the late events observed in this cohort were not severe, and many could be related to previous or subsequent therapies, suggesting a safe longterm profile of CD19-targeted CART cell immunotherapy.
CD19-targeted chimeric antigen receptor-engineered (CD19 CAR) T cell therapy has shown significant efficacy for relapsed or refractory (R/R) B-cell malignancies. Yet CD19 CAR T cells fail to induce durable responses in most patients. Second infusions of CD19 CAR T cells (CART2) have been considered as a possible approach to improve outcomes. We analyzed data from 44 patients with R/R B-cell malignancies (ALL, n=14; CLL, n=9; NHL, n=21) who received CART2 on a phase 1/2 trial at our institution. Despite a CART2 dose increase in 82% of patients, we observed a low incidence of severe toxicity after CART2 (grade ≥3 CRS, 9%; grade ≥3 neurotoxicity, 11%). After CART2, CR was achieved in 22% of CLL, 19% of NHL, and 21% of ALL patients. The median durations of response after CART2 in CLL, NHL, and ALL patients were 33, 6, and 4 months, respectively. Addition of fludarabine to cyclophosphamide-based lymphodepletion before CART1 and an increase in the CART2 dose compared to CART1 were independently associated with higher overall response rates and longer progression-free survival after CART2. We observed durable CAR T-cell persistence after CART2 in patients who received Cy-Flu lymphodepletion before CART1 and a higher CART2 compared to CART1 cell dose. The identification of two modifiable pre-treatment factors independently associated with better outcomes after CART2 suggests strategies to improve in vivo CAR T-cell kinetics and responses after repeat CAR T-cell infusions, and has implications for the design of trials of novel CAR T-cell products after failure of prior CAR T-cell immunotherapies.
CD19-targeted chimeric antigen receptor (CAR) modified T cell immunotherapy is a novel treatment with promising results in patients with relapsed/refractory lymphoid malignancies. CAR T cell therapy has known early toxicities of cytokine release syndrome and neurotoxicity, but little is known about long-term neuropsychiatric adverse effects. We have used patient-reported outcomes, including Patient-Reported Outcomes Measurement Information System (PROMIS) measures, to assess neuropsychiatric and other patient-reported outcomes of 40 patients with relapse/ refractory chronic lymphocytic leukemia, non-Hodgkin lymphoma, and acute lymphoblastic leukemia 1 to 5 years after treatment with CD19-targeted CAR T cells. Mean T scores of PROMIS domains of global mental health, global physical health, social function, anxiety, depression, fatigue, pain, and sleep disturbance were not clinically meaningfully different from the mean in the general US population. However, 19 patients (47.5%) reported at least 1 cognitive difficulty and/or clinically meaningful depression and/or anxiety, and 7 patients (17.5%) scored 40 in global mental health, indicating at least 1 standard deviation worse than the general population mean. Younger age was associated with worse long-term global mental health (P = .02), anxiety (P = .001), and depression (P= .01). Anxiety before CAR T cell therapy was associated with increased likelihood of anxiety after CAR T cell therapy (P = .001). Fifteen patients (37.5%) reported cognitive difficulties after CAR T cell therapy. Depression before CAR T cell therapy was statistically significantly associated with higher likelihood of self-reported post-CAR T cognitive difficulties (P = .02), and there was a trend for an association between acute neurotoxicity and self-reported post-CAR T cognitive difficulties (P = .08). Having more post-CAR T cognitive difficulties was associated with worse global mental health and global physical health. Our study demonstrates overall good neuropsychiatric outcomes in 40 long-term survivors after CAR T cell therapy. However, nearly 50% of patients in the cohort reported at least 1 clinically meaningful negative neuropsychiatric outcome (anxiety, depression, or cognitive difficulty), indicating that a significant number of patients would likely benefit from mental health services following CAR T cell therapy. Younger age, pre-CAR T anxiety or depression, and acute neurotoxicity may be risk factors for long-term neuropsychiatric problems in this patient population. Larger studies are needed to confirm these findings.
Pivotal clinical trials of B-cell maturation antigen (BCMA)-targeted chimeric antigen receptor (CAR) T-cell therapy in patients with relapsed/refractory multiple myeloma (MM) resulted in remarkable initial responses, which led to a recent FDA approval. Despite their success, durable remissions continue to be low, and the predominant mechanism of resistance is loss of CART-cells and inhibition by the tumor microenvironment (TME). MM is characterized by an immunosuppressive TME with an abundance of cancer-associated fibroblasts (CAFs). Using MM models, we studied the impact of CAFs on CART-cell efficacy and developed strategies to overcome CART-cell inhibition. We demonstrated that CAFs inhibit CART-cell anti-tumor activity and promote MM progression. CAFs express molecules such as fibroblast activation protein and SLAMF7, which are attractive immunotherapy targets. To overcome CAF-induced CART-cell inhibition, we generated CART cells targeting both MM cells and CAFs. Our dual-targeting CART-cell strategy significantly improved the effector functions of CART cells. We demonstrate for the first time that dual targeting both malignant plasma cells and the CAFs within the TME is a novel strategy to overcome resistance to CART-cell therapy in MM.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.