Metabolomic profiling of the hexacoral Pocillopora damicornis exposed to solar filters revealed a metabolomic signature of stress in this coral. It was demonstrated that the concentration of the known steroid (3β, 5α, 8α)-5, 8-epidioxy-ergosta-6, 24(28)-dien-3-ol (14) increased in response to octocrylene (OC) and ethylhexyl salicylate (ES) at 50 µg/L. Based on the overall coral response, we hypothesize that steroid 14 mediates coral response to stress. OC also specifically altered mitochondrial function at this concentration and above, while ES triggered a stress/inflammatory response at 300 µg/L and above as witnessed by the significant increases in the concentrations of polyunsaturated fatty acids, lysophosphatidylcholines and lysophosphatidylethanolamines. Benzophenone-3 increased the concentration of compound 14 at 2 mg/L, while the concentration of stress marker remained unchanged upon exposition to the other solar filters tested. Also, our results seemed to refute earlier suggestions that platelet-activating factor is involved in the coral inflammatory response. Coral reefs are experiencing an unprecedented planet-wide decline 1. This decline has been attributed to several anthropogenic factors, including global warming, overfishing, and pollution. Widely used for skin protection against cancer, solar filters are regularly released in the sea from populated coastal zones or in sites dedicated to touristic activities including a bathing zone. Nonetheless, the impacts of solar filters on corals have been relatively understudied to date. An early article from Danovaro and coworkers 2 demonstrated that solar filters can induce coral bleaching by promoting viral infections. More recently, it was shown that several UV filters in the benzophenone class, along with octocrylene (OC), exert direct detrimental effects on corals 3-7. Additionally, it has been shown that other ingredients in sunscreens and cosmetics exacerbate the toxicity of the UV filters OC and octinoxate 8 , while Fel et al. reported that many UV filters, including OC have little or no effect on corals 9. According to Downs et al., benzophenone-3 (BP3) induced concentration-dependent planulae coral bleaching, DNA-AP lesions, ossification of the planula, and planulae mortality, and these adverse effects were exacerbated by light 3. In our previous work, we compared the metabolomic profiles of exposed and unexposed corals and demonstrated that OC triggers mitochondrial dysfunction that results in the accumulation of acylcarnitines 7. Also of great concern were both the accumulation of OC derivatives in coral tissues and the concentration at which the toxicity was detected. In a 1-week exposure experiment, 19 OC derivatives were found in the coral tissue, and the response-inducing concentration was 50 µg/L, a concentration only 5 to 10 times higher than the highest environmental concentrations reported in the literature 10,11. Since wild corals are exposed to solar filters for longer periods of time, it has been hypothesized that OC does impact corals ...
The presence of pharmaceutical and personal care product (PPCP) residues in the aquatic environment is an emerging issue due to their uncontrolled release through gray water, and accumulation in the environment that may affect living organisms, ecosystems and public health. The aim of this study is to assess the toxicity of benzophenone-3 (BP-3), bis-ethylhexyloxyphenol methoxyphenyl triazine (BEMT), butyl methoxydibenzoylmethane (BM), methylene bis-benzotriazolyl tetramethylbutylphenol (MBBT), 2-ethylhexyl salicylate (ES), diethylaminohydroxybenzoyl hexyl benzoate (DHHB), diethylhexyl butamido triazone (DBT), ethylhexyl triazone (ET), homosalate (HS) and octocrylene (OC) on marine organisms from two major trophic levels, including autotrophs (Tetraselmis sp.) and heterotrophs (Artemia salina). In general, results showed that both HS and OC were the most toxic UV filters for our tested species, followed by a significant effect of BM on Artemia salina due to BM—but only at high concentrations (1 mg/L). ES, BP3 and DHHB affected the metabolic activity of the microalgae at 100 µg/L. BEMT, DBT, ET, MBBT had no effect on the tested organisms, even at high concentrations (2 mg/L). OC toxicity represents a risk for those species, since concentrations used in this study are 15–90 times greater than those reported in occurrence studies for aquatic environments. For the first time in the literature, we report HS toxicity on a microalgae species at concentrations complementing those found in aquatic environments. These preliminary results could represent a risk in the future if concentrations of OC and HS continue to increase.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.