A new method for direct measurement of the oleocanthal and oleacein levels in olive oil by quantitative (1)H NMR was developed. The method was applied to the study of 175 monovarietal commercial Greek and California olive oil samples. The main findings were as follows: (1) There was a significant variation concerning the concentrations of oleocanthal and oleacein among the studied samples. Their concentrations ranged from nondetectable to 355 mg/kg and their sum (index D1) from 0 to 501 mg/kg. (2) There are olive varieties that independent of geographic origin and harvest time produce oil that contains both compounds in low levels. (3) There is a positive correlation of a high level of oleocanthal and oleacein in olive oils with the early time of harvest. Although there is a need for more extensive study, a new index for the characterization of extra virgin olive oils, which is a combination of D1 = oleocanthal + oleacein level and D2 = oleocanthal/oleacein ratio, seems to be very useful.
A previously developed method for measurement of oleocanthal and oleacein in olive oil by quantitative (1)H NMR was expanded to include the measurement of the monoaldehydic forms of oleuropein and ligstroside aglycons. The method was validated and applied to the study of 340 monovarietal Greek and Californian olive oils from 23 varieties and for a 3-year period. A wide variation concerning the concentrations of all four secoiridoids was recorded. The concentration of each one ranged from nondetectable to 711 mg/kg and the sum of the four major secoiridoids (named as D3) ranged from nondetectable to 1534 mg/kg. Examination of the NMR profile of the olive oil extract before and after contact with normal or reversed stationary chromatography phase proved the artificial formation of the 5S,8S,9S aldehydic forms of oleuropein and ligstroside aglycon isomers during chromatography. Finally, methyl elenolate was identified for the first time as a minor constituent of olive oil.
This study demonstrates a simple method for one-step isolation of the main secondary metabolites of a hydroalcoholic extract of Crocus sativus stigmas (saffron) using step-gradient centrifugal partition chromatography. The analysis was performed in dual and elution-extrusion mode, using five biphasic systems of the solvents heptane/ethyl acetate/butanol/ethanol/water in ratios of 4:10:0:4:10, 1:13:0:4:10, 1:12:1:4:10, 1:10:3:4:10, and 1:7:6:4:10. Five major crocins, picrocrocin, and crocetin were directly isolated in one step. Scaling up to preparative level, allowed the recovery of significantly high quantities of pure compounds, especially trans-crocin-4, saffron's principal crocin. Comparing dual-mode and elution-extrusion, in dual-mode, the trans-crocin-4 containing fractions were co-eluted with a high amount of free β-d-glucose. In contrast, absence of free β-d-glucose was observed in the corresponding trans-crocin-4 fractions obtained by the second method denoting its superiority against dual-mode. Initiating analysis with the 4 solvent-system afforded selective isolation of trans-crocin-4, with reduction in experimental time and solvent consumption. Structure elucidation was performed by nuclear magnetic resonance spectroscopy, liquid chromatography with mass spectrometry, and high-resolution tandem mass spectrometry. The proposed methodology comprises an integrated approach for the purification and characterization of biologically active saffron components in a fast, selective, and environmentally friendly manner.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.