An increase of multiple sclerosis (MS) incidence has been reported during the last decade, and this may be connected to environmental factors. This review article aims to encapsulate the current advances targeting the study of the gut–brain axis, which mediates the communication between the central nervous system and the gut microbiome. Clinical data arising from many research studies, which have assessed the effects of administered disease-modifying treatments in MS patients to the gut microbiome, are also recapitulated.
Inhibition of the myelin-associated neurite outgrowth inhibitor Nogo-A has been found to be beneficial in experimental autoimmune encephalomyelitis (EAE), but there are little data on its expression dynamics during the disease course. We analyzed Nogo-A mRNA and protein during the course of EAE in 27 C57BL/6 mice and in 8 controls. Histopathologic and molecular analyses were performed on Day 0 (naive), preclinical (Day 10), acute (Days 18-22) and chronic (Day 50) time points. In situ hybridization and real-time polymerase chain reaction analyses revealed reduced Nogo-A mRNA expression at preclinical (p < 0.0001) and acute phases (p < 0.0001), followed by upregulation during the chronic phase (p < 0.0001). Nogo-A mRNA was expressed in neurons and oligodendrocytes. By immunohistochemistry and Western blot, there was increased Nogo-A protein expression (p < 0.001) in the chronic phase. Moreover, spatial differences were observed within EAE lesions. The pattern of Nogo-A protein expression inversely correlated with axonal regeneration growth-associated protein 43-positive axons (60% of which were Nogo-A contact-free during the acute phase) and axonal injury (β-amyloid precursor protein-positive axons). Cortical Nogo-66 receptor protein and mRNA levels increased during the chronic phase. The results indicate that Nogo-A and Nogo receptor are actively regulated in EAE lesions; this may indicate a specific time window for localized axonal regeneration in the acute phase of EAE.
Multiple sclerosis (MS) is a chronic autoimmune disease of the central nervous system (CNS) characterized by inflammation and neurodegeneration. The most prominent clinical features include visual loss and sensorimotor symptoms and mainly affects those of young age. Some of the factors affecting its pathogenesis are genetic and/or environmental including viruses, smoking, obesity, and nutrition. Current research provides evidence that diet may influence MS onset, course, and quality of life of the patients. In this review, we address the role of nutrition on MS pathogenesis as well as dietary interventions that show promising beneficial results with respect to MS activity and progression. Investigation with large prospective clinical studies is required in order to thoroughly evaluate the role of diet in MS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.