This study provides insights into the experience gained from investigating the thermodynamic behavior of well and reservoir fluids during acid gas injection (AGI) in a hydrocarbon field to enhance oil recovery (EOR) and to reduce greenhouse gas emissions. Unlike conventional water and natural gas injection, AGI involves complicated phase changes and physical property variations of the acid gas and reservoir fluids at various pressure-temperature (P-T) conditions and compositions, and both constitute crucial parts of the EOR chain. A workflow is developed to deal with the reservoir fluid and acid gas thermodynamics, which is a key requirement for a successful design and operation. The workflow focuses firstly on the development of the thermodynamic models (EoS) to simulate the behavior of the reservoir fluids and of the injected acid gas and their integration in the field and in well dynamic models. Subsequently, the workflow proposes the thermodynamic simulation of the fluids’ interaction to determine the Minimum Miscibility Pressure (MMP), yielding the dynamic evolution of the fluids’ miscibility that may appear within the reservoir. Flow assurance in the acid gas transportation lines and in the wellbore is also considered by estimating the hydrate formation conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.