Novel propulsion systems have been studied in literature to reduce aircraft emissions with hydrogen or other electrical energy sources. Hybrid Electric Propulsion (HEP) system consists of electric machines as an alternative way to provide power for propulsion resulting in the reduction of aircraft fuel consumption. While reduction of emission is the main driver of new HEP designs, aircraft noise reduction and performance improvement will also need to be investigated. Much quieter electrified aircraft than conventional aircraft is explored with considering the benefits of coupled design between the propeller and electric machines. In this study, several electric machine designs have been explored and coupled with the propeller design to study the trade-off between the aerodynamic and acoustic performance of the propeller. Aerodynamic optimization is used as a baseline to minimize the energy consumption to find the aerodynamics optimum subject to constraints on the thrust levels during the mission. The propeller aerodynamic optimizer considers the electric machine efficiency map, which is a function of propeller torque and rotational speed, to find the optimum combination of propeller and electric machine designs. The objective function of the acoustic optimizations is to reduce the cumulative noise level over the entire mission. It is shown that a wider envelope of peak motor efficiency in the efficiency map provides acoustics and aerodynamic performance benefits. The trade-offs between reducing noise or increasing aerodynamic efficiency to reduce energy consumption are demonstrated.
Proton Exchange Membrane Fuel Cells (PEMFC) are receiving interest as an electrical source of energy for aircraft propulsion electrification. However, their implementation challenges such as durability, reliability, and the dynamic behaviour of Fuel Cells (FCs) in an integrated hybrid propulsion system have not been fully explored. Currently, most commercial PEMFC stacks have maximum power close to 150kW. To achieve higher power required for aviation, these stacks can be connected in series and parallel to achieve high voltage required for propulsion. Poor design procedure of cells and stacks can cause variation between the stacks resulting in failure and fast degradation of the connected stacks. In this paper the impact of voltage and current drop of one stack, which could be caused by changes in the fuel cell's individual axillary parts, degradation of the cells within the stack, or faults in the connections and distribution is explored. Upon exploring different configurations, it is found that the arrangements of FC stacks connections could help in reducing the impact of voltage and current variations due to degradation in each stacks. The imbalance stack performance and its effects on the whole energy storage system performance is not fully explored before. It is important to conduct quantitative analysis on these issues before the PEMFC system can be implemented.
All-electric aircraft can eliminate greenhouse gas emissions during aircraft mission, but the low predicted energy storage density of batteries (=0.5 kWh/kg), and their life cycle, limits aircraft payload and range for regional aircraft. Proton Exchange Membrane Fuel Cells (PEMFCs) using hydrogen are explored as an alternative power source. As the effort on designing high power density and highly efficient fuel cell systems continues, a trade off study on the effect of fuel cell configurations and the electrical conversion strategy on system efficiency, total weight, failure cases, and reduction of power due to failures, will inform future designs. Introducing viable fuel cell stacks and electrical configurations motivates such a trade off study, as well as concentrated design effort into these components. Currently available fuel cell stacks are designed at lower power (in the range of 150kW) to what is required for regional aircraft propulsion (in the range of 4MW). Hence to achieve the total required power, the fuel cell stacks are connected in parallel and series to create multi-stack configurations and provide higher power. In this study, multi-stack fuel cell configurations and the selected DC/DC converters are assessed. Each configuration is evaluated based on power converter design and redundancy, design for high voltage, degradation of fuel cell stacks, total system efficiency, and controllability of fuel cell stacks.
Hot corrosion is defined as the accelerated oxidation/sulphidation in the presence of alkali metal molten salts. It is a form of chemical attack that causes good metal loss. Current lifing models in aircraft engines focus on creep, fatigue and oxidation while hot corrosion damage has been overlooked as being of secondary importance. However, the absence of hot corrosion lifing models for aircraft engines often leads to unexpected and unexplained hot corrosion findings by aircraft engine operators and Maintenance, Repair and Overhaul (MRO) providers during inspections. Although hot corrosion does not cause failure on its own, the interaction with other damage mechanisms can reduce component life significantly, consequently, there is a requirement for including hot corrosion in the damage prediction process of aircraft engines. In both theoretical and experimental studies in literature, deposition of molten salts is identified as one of the primary conditions for hot corrosion to occur and an increased amount of deposited liquid salts accelerates the attack. Currently, most hot corrosion studies are limited to experimental testing of superalloys which are pre-coated with a controlled layer of salts. Such experimental studies are disconnected from gas turbine operating conditions during service. The present paper analyses two deposition rate models applicable to gas turbine operating conditions using Design of Experiments. Design space exploration is presented by taking into account gas turbine operating parameters which vary during a flight as well as temperature ranges where hot corrosion can occur. Analysis of variance is presented for 6 input parameters using Box-Behnken 3-level factorial design. Results from the Analysis of Variance indicate that the deposition rate models are sensitive to pressure and salt concentration in the gas flow. Finally, the saturation point of sodium sulphate has been investigated within the operating range of gas turbine and it was found that it can vary significantly under different conditions.
This paper addresses the teaching of gas turbine technology in a third-year undergraduate course in Sweden and the challenges encountered. The improvements noted in the reaction of the students and the achievement of the learning outcomes is discussed. The course, aimed at students with a broad academic education on energy, is focused on gas turbines, covering topics from cycle studies and performance calculations to detailed design of turbomachinery components. It also includes economic aspects during the operation of heat and power generation systems and addresses combined cycles as well as hybrid energy systems with fuel cells. The course structure comprises lectures from academics and industrial experts, study visits, and a comprehensive assignment. With the inclusion of all of these aspects in the course, the students find it rewarding despite the significant challenges encountered. An important contribution to the education of the students is giving them the chance, stimulation, and support to complete an assignment on gas turbine design. Particular attention is given on striking a balance between helping them find the solution to the design problem and encouraging them to think on their own. Feedback received from the students highlighted some of the challenges and has given directions for improvements in the structure of the course, particularly with regards to the course assignment. This year, an application developed for a mobile phone in the Aristotle University of Thessaloniki for the calculation of engine performance will be introduced in the course. The app will have a supporting role during discussions and presentations in the classroom and help the students better understand gas turbine operation. This is also expected to reduce the workload of the students for the assignment and spike their interest.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with đź’™ for researchers
Part of the Research Solutions Family.