In this work, the potential of natural and pretreated palm tree trunk (PTT) as agents for adsorption of an organic dye, 2,6-dichlorophenolindophenol (2,6-DCPIP) from aqueous solutions was probed. Natural and acetic acid treated PTT were characterized by Fourier transform infrared (FT-IR) spectroscopy and by the point of zero charge (pzc). The biosorption of 2,6-DCPIP was investigated in batch mode using natural and treated PTT. This study was achieved by highlighting several parameters such as the contact time, biosorbents dosage, the initial concentration of 2,6-DCPIP, the pH of the solution, the ionic strength and the interfering ions. The results showed that 2,6-DCPIP was successfully adsorbed from aqueous solutions by natural and treated PTT. The equilibrium was attained after 40 minutes for treated PTT and 20 minutes for natural PTT. The maximum capacity of adsorption was obtained at pH = 2. The adsorption isotherms were investigated and it was found that the experimental data were best described by the Dubinin-Radushkevich isotherm for the natural PTT (R 2 = 0.979) and by the Temkin isotherm for the treated PTT (R 2 = 0.976). The maximum adsorption capacities determined by Langmuir isotherm were found as 108.932 and 157.233 µmol•g −1 for natural and treated PTT, respectively. The adsorption kinetics was analyzed and was best described by the pseudo-second order model (R 2 ≥ 0.998). The diffusion mechanism was studied and the result showed that external mass transfer is the main rate controlling step. The desorption of 2,6-DCPIP is favorable in alkaline medium.
Electrochemical determination of acetaminophen (APAP) was successfully performed using a carbon paste electrode (CPE) modified with coffee husks (CH-CPE). Scanning electron microscopy (SEM) and SEM-energy dispersive X-ray spectroscopy (SEM-EDX) were, respectively, used for the morphological and elemental characterization of coffee husks prior to their utilization. The electrochemical oxidation of APAP was investigated by cyclic voltammetry (CV), differential pulse voltammetry (DPV), and square wave voltammetry (SWV). SWV technique appeared to be more sensitive since the oxidation current of APAP was twofold higher with the CH-CPE sensor than with the bare CPE, in relation to the increase in the organophilic character of the electrode surface. Furthermore, on CH-CPE, the current response of APAP varied linearly with its concentration in the range of 6.6 μM to 0.5 mM, leading to a detection limit of 0.66 μM (S/N=3). Finally, the proposed CH-CPE sensor was successfully used to determine the amount of APAP in commercialized tablets (Doliprane® 500 and Doliprane 1000), with a recovery rate ranging from 98% to 103%. This novel sensor opens the way for the development of low-cost and reliable devices for the electroanalysis of pharmaceutical formulations in developing countries.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.