During FCC catalyst regeneration, part of the nitrogen in coke forms NO x , which makes up a significant part of the total NO x refinery emissions. The addition of a small percentage (e1 wt %) of catalytic additive(s) in the FCC inventory can reduce the NO x emissions from the flue gases of the FCC regenerator. In this paper, experimental techniques are considered for evaluating, in laboratory reactors, the performance of two commercially available NO x removal additives. It has been shown that in an FCC regenerator the gas residence time and the concentration of CO in the flue gases are key parameters in controlling NO x emissions. For example, pilot plant experiments showed that the addition of a CO oxidation promoter (CP-3) in the catalytic inventory decreases the CO emissions significantly and increases the NO x emissions about 4 times. Replacement of the active CO oxidation promoter (CP-3) with an additive (XNO x ) with moderate CO oxidation activity reduced the NO x emissions by 78%. Comparison of regeneration results performed in bench-scale reactors with those measured in our FCC pilot plant unit showed that it is possible to evaluate NO x reduction additives in bench-scale experiments. The proposed protocol for this evaluation is to mix spent FCC catalyst with the NO x reduction additive and to load this mixture in a fluidized bed reactor. The above mixture is then regenerated at 700 °C by 2% O 2 diluted in N 2 .
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.