The prevalence of nonalcoholic fatty liver disease has been continuously rising over the last three decades and is projected to become the most common indication for liver transplantation in the near future. Its pathophysiology and complex interplay with diabetes and the metabolic syndrome are not as yet fully understood despite growing scientific interest and research. Modern imaging techniques offer significant assistance in this field by enabling the study of the liver noninvasively and evaluation of the degree of both steatosis and fibrosis, and even in attempting to diagnose the presence of inflammation (steatohepatitis). The derived measurements are highly precise, accurate and reproducible, performing better than biopsy in terms of quantification. In this article, these imaging techniques are overviewed and their performance regarding diagnosis, stratification and monitoring are evaluated. Their expanding role both in the research arena and in clinical practice along with their limitations is also discussed.
Hepatocellular carcinoma (HCC) is the fourth leading cause of cancer related death worldwide. Radiology has traditionally played a central role in HCC management, ranging from screening of high-risk patients to non-invasive diagnosis, as well as the evaluation of treatment response and post-treatment follow-up. From liver ultrasonography with or without contrast to dynamic multiple phased CT and dynamic MRI with diffusion protocols, great progress has been achieved in the last decade. Throughout the last few years, pathological, biological, genetic, and immune-chemical analyses have revealed several tumoral subtypes with diverse biological behavior, highlighting the need for the re-evaluation of established radiological methods. Considering these changes, novel methods that provide functional and quantitative parameters in addition to morphological information are increasingly incorporated into modern diagnostic protocols for HCC. In this way, differential diagnosis became even more challenging throughout the last few years. Use of liver specific contrast agents, as well as CT/MRI perfusion techniques, seem to not only allow earlier detection and more accurate characterization of HCC lesions, but also make it possible to predict response to treatment and survival. Nevertheless, several limitations and technical considerations still exist. This review will describe and discuss all these imaging modalities and their advances in the imaging of HCC lesions in cirrhotic and non-cirrhotic livers. Sensitivity and specificity rates, method limitations, and technical considerations will be discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.