Pomegranate (Punica granatum L.) is an ancient fruit that is particularly cultivated in west Asia, though it is also cultivated in the Mediterranean region and other parts of the world. Since ancient years, its consumption has been associated with numerous health benefits. In recent years, several in vitro and in vivo studies have revealed its beneficial physiological activities, especially its antioxidative, antimicrobial and anti-inflammatory properties. Furthermore, human-based studies have shown promising results and have indicated pomegranate potential as a protective agent of several diseases. Following that trend and the food industry’s demand for antioxidants and antimicrobials from natural sources, the application of pomegranate and its extracts (mainly as antioxidants and antimicrobials), has been studied extensively in different types of food products with satisfactory results. This review aims to present all the recent studies and trends in the applications of pomegranate in the food industry and how these trends have affected product’s physicochemical characteristics and shelf-life. In addition, recent in vitro and in vivo studies are presented in order to reveal pomegranate’s potential in the treatment of several diseases.
Nowadays, there is growing interest for the development of enriched dairy products with phenolic compounds derived from edible sources, mainly due to their safety and potential health benefits. Following that trend, in the present study, fruit juices (blueberry, aronia, and grape) were supplemented into yogurt as functional ingredients. The main physicochemical characteristics (pH, reducing sugars, acidity, color, and syneresis), total phenolic content, antioxidant activity, and viability of yogurt starters were monitored during production and storage. The use of juices had no significant effect on milk acidification rate and on the main physicochemical characteristics of yogurts, while resulted in increased red color. Total phenolic content increased from 30 to 33% (grape and aronia) and up to 49% (blueberry), while similar results were observed in antioxidant activity. Similar values of syneresis were presented in all yogurts, probably due to exopolysaccharide producing starter culture. Streptococcus thermophilus retained high viable counts during storage especially in yogurts with fruit juices (>108 cells g−1) revealing a possible prebiotic effect of juices. The results obtained from this study show that fruit juices (aronia, blueberry, and grape) have potential to be used in yogurt production in order to optimize the benefits of probiotic products with high phenolic compound intake.
In the present study, three commercial yeasts (for wine, beer, and cider) were evaluated for the production of pomegranate alcoholic beverage (PAB) from a juice of Wonderful variety. The physicochemical characteristics, antioxidant activity, and aromatic profiles of PABs were investigated before and after fermentation, while the effect of yeast strain and fermentation temperature (15 and 25 °C) was also evaluated. The PABs contained ethanol in the ranges of 5.6–7.0% v/v, in combination with glycerol (2.65–6.05 g L-1), and low volatile acidity. Total flavonoid content, total phenolic content, free radical-scavenging activity, and total monomeric anthocyanin content appeared to decrease after fermentation, possibly due to hydrolysis, oxidation, and other reactions. In general, PABs retained 81–91% of free radical-scavenging activity, 29–41% of phenolics, 24–55% of flavonoids, and 66–75% of anthocyanins. The use of different yeast affected mainly flavonoids and anthocyanins, and yeast strain M02 resulted in the highest values after fermentation. In PABs, 30 different volatile compounds were identified, specifically 15 esters, 4 organic acids, 8 alcohols, and 3 terpenes. The principal component analysis showed that the fermentation temperature affected significantly volatile composition, whereas, among the yeasts, WB06 is the one that seems to differentiate. The findings of this study show that the selection of the appropriate yeast and fermentation temperature is very crucial and affects the characteristics of the final product.
Nowadays, there is a growing consumer demand for non-dairy functional foods due to several health issues related to milk and dairy consumption and increasing vegetarianism. Following that trend, in the present study emmer-based beverages were developed after flour gelatinization, fortification with fruit juices (blueberry, aronia, and grape) and fermentation with the potential probiotic strain Lactiplantibacillus plantarum 2035. The produced beverages were subjected to a 4-week storage at 4 °C. The addition of juices significantly affected the physicochemical characteristics of the beverages, while resulting in increased red color. Total phenolic content (22.3–31.9 mg gallic acid equivalents 100 g−1) and antioxidant activity (94–136 μmol Trolox equivalents 100 g−1) were significantly higher in the case of aronia juice followed by blueberry and grape juice. All beverages showed high values of apparent viscosity and water-holding capacity. Lactiplantibacillus plantarum 2035 retained high viable counts during storage especially in beverages with fruit juices (>108 cells g−1 up to 21st day) revealing a positive effect of the juices. The obtained results show that emmer-based beverages fortified with fruit juices (aronia, blueberry, and grape) have a great potential as carriers of probiotics, prebiotics and other functional compounds and may be served as an ideal alternative to dairy products.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.