Urban flooding is becoming increasingly destructive in the Mediterranean region as more and more urban infrastructure and socioeconomic activities are exposed to flood risk. The metropolitan area of Athens, Greece, is no exception to this flood-prone regime, presenting a rich record of flood events during the last century. On February 22, 2013, a high-intensity storm that lasted 7 h hit Athens, severely impacting the transportation sector, hindering vehicle circulation and the overall performance of the road network. This paper studies the impacts of high-intensity storms in urban areas by examining the effects of the February 2013 Athens storm and the resultant flood event. Its novelty lies in the impacts quantification approach, applying cutting-edge traffic flow control methodologies in the form of macroscopic fundamental diagrams. It quantifies the storm's impacts on vehicular traffic in terms of operational disruptions during the event, by analyzing various traffic-related indicators, such as travel time, delays, speed drop and re-routing of vehicles, using data from the Athens traffic management center and urban freight vehicle fleets. Results show increased travel times, significant changes in routing and substantial speed drops, highlighting the disruptive effects of the flooding event on traffic. The importance of developing a qualitative and quantitative understanding of the effects of such events in urban areas is particularly high, considering the context of the changing climate and the increasing frequency and intensity of extreme weather events.
This paper aims at presenting up-to-date urban mobility and traffic related indicators for the city of Thessaloniki, Greece. Insights are provided on the modeling approach and the methodologies used for the calculation of the mobility indicators, in regard to travel demand estimation and assignment of traffic in the network. Travel demand and supply data used for modeling urban mobility are presented, together with the processes followed and their outputs. Car ownership, vehicle occupancy, modal split and hourly traffic volumes are among the examined indicators. Index Terms-Mobility indicators, transport modeling, travel demand, urban mobility.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.