The exponential growth of the biomedical literature is making the need for efficient, accurate text-mining tools increasingly clear. The identification of named biological entities in text is a central and difficult task. We have developed an efficient algorithm and implementation of a dictionary-based approach to named entity recognition, which we here use to identify names of species and other taxa in text. The tool, SPECIES, is more than an order of magnitude faster and as accurate as existing tools. The precision and recall was assessed both on an existing gold-standard corpus and on a new corpus of 800 abstracts, which were manually annotated after the development of the tool. The corpus comprises abstracts from journals selected to represent many taxonomic groups, which gives insights into which types of organism names are hard to detect and which are easy. Finally, we have tagged organism names in the entire Medline database and developed a web resource, ORGANISMS, that makes the results accessible to the broad community of biologists. The SPECIES software is open source and can be downloaded from http://species.jensenlab.org along with dictionary files and the manually annotated gold-standard corpus. The ORGANISMS web resource can be found at http://organisms.jensenlab.org.
BackgroundThe Environment Ontology (ENVO; http://www.environmentontology.org/), first described in 2013, is a resource and research target for the semantically controlled description of environmental entities. The ontology's initial aim was the representation of the biomes, environmental features, and environmental materials pertinent to genomic and microbiome-related investigations. However, the need for environmental semantics is common to a multitude of fields, and ENVO's use has steadily grown since its initial description. We have thus expanded, enhanced, and generalised the ontology to support its increasingly diverse applications.MethodsWe have updated our development suite to promote expressivity, consistency, and speed: we now develop ENVO in the Web Ontology Language (OWL) and employ templating methods to accelerate class creation. We have also taken steps to better align ENVO with the Open Biological and Biomedical Ontologies (OBO) Foundry principles and interoperate with existing OBO ontologies. Further, we applied text-mining approaches to extract habitat information from the Encyclopedia of Life and automatically create experimental habitat classes within ENVO.ResultsRelative to its state in 2013, ENVO's content, scope, and implementation have been enhanced and much of its existing content revised for improved semantic representation. ENVO now offers representations of habitats, environmental processes, anthropogenic environments, and entities relevant to environmental health initiatives and the global Sustainable Development Agenda for 2030. Several branches of ENVO have been used to incubate and seed new ontologies in previously unrepresented domains such as food and agronomy. The current release version of the ontology, in OWL format, is available at http://purl.obolibrary.org/obo/envo.owl.ConclusionsENVO has been shaped into an ontology which bridges multiple domains including biomedicine, natural and anthropogenic ecology, ‘omics, and socioeconomic development. Through continued interactions with our users and partners, particularly those performing data archiving and sythesis, we anticipate that ENVO’s growth will accelerate in 2017. As always, we invite further contributions and collaboration to advance the semantic representation of the environment, ranging from geographic features and environmental materials, across habitats and ecosystems, to everyday objects in household settings.
BackgroundComplexity is a key problem when visualizing biological networks; as the number of entities increases, most graphical views become incomprehensible. Our goal is to enable many thousands of entities to be visualized meaningfully and with high performance.ResultsWe present a new visualization tool, Arena3D, which introduces a new concept of staggered layers in 3D space. Related data – such as proteins, chemicals, or pathways – can be grouped onto separate layers and arranged via layout algorithms, such as Fruchterman-Reingold, distance geometry, and a novel hierarchical layout. Data on a layer can be clustered via k-means, affinity propagation, Markov clustering, neighbor joining, tree clustering, or UPGMA ('unweighted pair-group method with arithmetic mean'). A simple input format defines the name and URL for each node, and defines connections or similarity scores between pairs of nodes. The use of Arena3D is illustrated with datasets related to Huntington's disease.ConclusionArena3D is a user friendly visualization tool that is able to visualize biological or any other network in 3D space. It is free for academic use and runs on any platform. It can be downloaded or lunched directly from . Java3D library and Java 1.5 need to be pre-installed for the software to run.
The study of ecosystem functioning – the role which organisms play in an ecosystem – is becoming increasingly important in marine ecological research. The functional structure of a community can be represented by a set of functional traits assigned to behavioural, reproductive and morphological characteristics. The collection of these traits from the literature is however a laborious and time-consuming process, and gaps of knowledge and restricted availability of literature are a common problem. Trait data are not yet readily being shared by research communities, and even if they are, a lack of trait data repositories and standards for data formats leads to the publication of trait information in forms which cannot be processed by computers. This paper describes Polytraits (http://polytraits.lifewatchgreece.eu), a database on biological traits of marine polychaetes (bristle worms, Polychaeta: Annelida). At present, the database contains almost 20,000 records on morphological, behavioural and reproductive characteristics of more than 1,000 marine polychaete species, all referenced by literature sources. All data can be freely accessed through the project website in different ways and formats, both human-readable and machine-readable, and have been submitted to the Encyclopedia of Life for archival and integration with trait information from other sources.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.