Optoelectronic technology is expected to be the cornerstone of sub-THz communication systems, enabling access to and use of the vast frequency resources found in this portion of the spectrum. In this work we demonstrate a photonics-enabled sub-THz wireless link operating in real-time settings, using a PIN-PD-based THz emitter, and a THz receiver based on an ultra-fast photoconductor. The real-time generation and detection of the information signal is performed by an intermediate frequency (IF) unit based on a commercially available mmWave platform, operating at 1.6 GBaud. The evaluation of our setup takes place on two phases. Firstly, a homodyne scenario is demonstrated, where the same pair of lasers is used at the transmitter and receiver side. Secondly, we demonstrate a heterodyne scheme, employing optical phase locking techniques at the receiver. Errorfree operation was achieved in both scenarios at a bit rate of 3.2 Gb/s, over 1 m of free-space with ambient air. The broadband characteristics of our setup were validated, achieving error-free transmission over a 0.22 THz range, spanning from 90 up to 310 GHz. Finally, the stability of our real-time link was successfully demonstrated, showing stable SNR performance at the receiver with adaptive capabilities, over a time period of 5 min and 22 sec.
Photonic integrated circuits (PICs) are one of the key enablers for beyond 5G networks. A novel generation of fully integrated photonic-enabled transceivers operating seamlessly in W-D-and THz-bands is developed within the EU funded project TERAWAY. Photonic integration technology enables key photonic functionalities on a single PIC including photonic up/down conversion. For efficient down-conversion at the photonic integrated receiver, we develop the first waveguide-fed photoconductive antenna for THz communications. Finally, we report on the experimental implementation of a fully photonic-enabled link operating across W-D-and THz-bands.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.