A procura por novas fontes de combustíveis alternativos, para substituir o uso de combustíveis fósseis e diminuir a emissão de gases, tem aumentado nos últimos anos. O hidrogênio tem se tornado cada vez mais um combustível alternativo interessante, pois não produz gás de efeito estufa CO2 e oferece potencial de redução de poluentes NOX e pode aumentar a economia de combustível quando usado em misturas de hidrocarbonetos. Neste trabalho foi realizado a simulação numérica para chamas difusivas de hidrogênio no interior de uma câmara de combustão no formato retangular. Portanto, foram aplicadas as equações reativas de Navier-Stokes, fração de mistura para o fluxo e para a parte química o método Flamelet. Para a modelagem da turbulência, foram usados a técnica conhecida como simulação em grandes escalas (LES), e o método de diferenças finitas para discretizar as equações. Também foram realizadas simplificações e adimensionalizações nos termos das equações com a finalidade de diminuir a complexidade do problema. Os resultados numéricos obtidos foram comparados com dados encontrados na literatura, estão em concordância com estes.
A simulação numérica é amplamente utilizada na área de dinâmica dos fluidos, pois por meio do emprego de métodos numéricos pode-se analisar o comportamento de diferentes tipos de escoamentos de fluidos. Neste trabalho realizou-se a simulação numérica de um escoamento incompressível utilizando as equações de Navier-Stokes aplicadas para o escoamento de um fluido no interior de uma cavidade quadrada. Para a discretização dessas equações usou-se o método das Diferenças Finitas e para tratar o acoplamento da velocidade e pressão presentes nas equações de Navier-Stokes foram aplicados dois métodos: o método do Passo Fracionado e o método da Penalidade, facilitando assim a resolução dessas equações. Fazendo uso de um código escrito em linguagem C++ foram realizadas simulações de escoamentos bidimensionais para o número de Reynolds 100, 400 e 1.000. Os resultados numéricos deste trabalho foram comparados com os resultados de referência disponíveis na literatura. O método do Passo Fracionado foi o método que gerou resultados mais satisfatórios quando comparado com o método da Penalidade, baseado nos resultados de referência.
A simulação numérica é amplamente utilizada na área de dinâmica dos fluidos, pois por meio do emprego de métodos numéricos pode-se analisar o comportamento de diferentes tipos de escoamentos de fluidos. Neste trabalho realizou-se a simulação numérica de um escoamento incompressível utilizando as equações de Navier-Stokes aplicadas para o escoamento de um fluido no interior de uma cavidade quadrada. Para a discretização dessas equações usou-se o método das Diferenças Finitas e para tratar o acoplamento da velocidade e pressão presentes nas equações de Navier-Stokes foram aplicados dois métodos: o método do Passo Fracionado e o método da Penalidade, facilitando assim a resolução dessas equações. Fazendo uso de um código escrito em linguagem C++ foram realizadas simulações de escoamentos bidimensionais para o número de Reynolds 100, 400 e 1.000. Os resultados numéricos deste trabalho foram comparados com os resultados de referência disponíveis na literatura. O método do Passo Fracionado foi o método que gerou resultados mais satisfatórios quando comparado com o método da Penalidade, baseado nos resultados de referência.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.