Provitamin A cassava clones were analysed for starch yield and critical starch quality attributes, to understand possible applications in the food industry. Total carotenoids content in the test clones ranged from 0.03-11.94 μg g-1 of fresh root. Starch yield ranged from 8.4-33.2 % and correlated negatively (r = -0.588, P < 0.001) with carotenoids content. Amylose content (16.4–22.1%) didn't differ significantly (P ≤ 0.05) among the cassava clones. Meanwhile, total carotenoid content had significant negative correlations (P ≤ 0.05) with starch pasting temperature, peak time, setback viscosities and peak area. The reduced peak time and pasting temperatures in high-carotenoid cassava signifies reduction in energy requirements in yellow-fleshed roots when compared to white-fleshed cassava. This attribute is desirable for the food industry as it would reduce the overall cost of processing the cassava. Furthermore, final viscosities of starch from carotenoid-rich cassava were lower than those of white-fleshed roots, making provitamin A cassava suitable for soft food processing.
Cassava (Manihot esculenta Crantz) roots in the fresh form, are susceptible to postharvest physiological deterioration (PPD), thus reducing their economic value and farmer benefits. The objective of this study was to evaluate the effectiveness of pruning and waxing on fresh root storability among cassava varieties in Uganda. Sixteen cassava plants per variety (TME 14, NASE 14, Nyaraboke, Kirimumpale, and Bukalasa) were pruned seven days before harvest, leaving the rest as unpruned controls. After harvest, roots were divided into two portions and one portion was waxed using food grade wax. Pruning alone reduced PPD of stored roots by 23% at day 14 of storage; and by 19% at day 28 compared with the control. Pruning as a treatment resulted into increased sugar content, ranging 9-30%), and significant (P<0.05) losses in starch yield. Pruning combined with waxing, resulted in a reduction of up to 43% in PPD by day 14, and up to 67 at day 28. Reduction in carbohydrate (starch) was not significant (P>0.05) under the pruning and waxing treatment, which had minor effects on stored root composition. The results indicate that pruning is appropriate for the short-term storage of fresh cassava roots for up to 14 days. Waxing, combined with pruning, is suitable for longer term storage up to 28 days under Uganda conditions.
The threat posed by plastics to the environment has prompted the development of bioplastics. Starch plasticized by glycerol is a key renewable resource in the production of high-quality bioplastics. Previous studies have availed information on the mechanical quality of starch-based bioplastics however there is limited information about their degradation pattern in the natural environment which this research presents. Bioplastics were buried in holes in loam sandy soil and weekly photographic data and weight were collected to reveal the effect of degradation. Weather parameters of rainfall, temperature, relative humidity, sunshine intensity and sunshine hours were recorded to establish influence of weather on degradation. A control set up in the laboratory was used to compare the results. Over time the tests revealed that as the hydrophilic enzymes break down the bioplastic, its weight initially increases (up to 87%) due to absorption of moisture and after saturation, the bioplastic is disintegrated which initiates decomposition and the bioplastic weight is steadily reduced. Degradation was further enhanced by invasion of soil organisms like worms, termites among other soil microbes. Rainfall (r = 0.857) increased the moisture in the soil which initially increased the weight of the bioplastic up to a point when the hydrophilic enzymes set into breakdown the bioplastic then the weight started to drop. This was the same case for relative humidity (r = −0.04) however; the sunlight intensity (r = 515) and hours of illumination indirectly affect the process by influencing microbial activity. An increase in the sunshine intensity increased the activity of soil organisms up to a point beyond which increased exposure caused the organisms to burrow deeper in the soil. Increase in microbial activity increased the rate of degrada-How to cite this paper: AhimbisibweJournal of Agricultural Chemistry and Environment tion of the buried bioplastics which took five to ten weeks to fully decompose (98.3%). The reduced time of degradation means that starch-based bioplastics have a high potential as sustainable substitute for petroleum-based plastics.
Allelochemicals cause yield differences under various ecosystems worldwide. Studies were conducted at the National Crops Resources Research Institute, Namulonge, Uganda during 2016 to investigate allelopathic properties of bioactive compounds in upland rice (NERICA 1), Desmodium uncinatum, Zea mays (LONGE 6H) and Mucuna pruriens root leachates. Studies involved pot screening, equal compartment agar experiments, germination tests and growth of potted plants. Results under the pot study indicated that maize, rice and mucuna leachates significantly (P ≤ 0.05), reduced root lengths (49%-63%), plant heights (48%-66%) and biomass (63%-75%) for Ageratum conyzoides, Bidens pilosa and Gallinsoga. parviflora weeds. G. parviflora root growth was reduced (20%-41%) and stem growth declined (19%-42%) when maize, rice and mucuna leachates were applied in the equal compartment agar study. Increased leachate concentrations (25%-75%) significantly (P ≤ 0.05), increased the mean germination time (0.4-2.8 days) for mucuna, desmodium, rice and maize as seed germination indices (SGI) were reduced (1.3%-49%). Potted mucuna, maize and desmodium reduced (1.3%-49%) rice root length. Potting mucuna with maize reduced (32%) mucuna leaf width while desmodium growth parameters were reduced (49%-64%) when potted with maize and mucuna. Potting maize with mucuna or desmodium increased the maize leaf length (18%) and SGI (25). Application of higher (25%-75%) rice/maize leachate concentrations similarly increased the maize leaf length (31%) and SGI (119). Allelopathic properties affect seed germination, crop growth and development, and characterise ecosystems age structures. Strategic management of crops under allelopathic ecosystems is critical.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.