The intracortical neural interface (INI) could be a key component of brain machine interfaces (BMI), devices which offer the possibility of restored physiological neurological functionality for patients suffering from severe trauma to the central or peripheral nervous system. Unfortunately the main components of the INI, microelectrodes, have not shown appropriate long-term reliability due to multiple biological, material, and mechanical issues. Silicon carbide (SiC) is a semiconductor that is completely chemically inert within the physiological environment and can be micromachined using the same methods as with Si microdevices. We are proposing that a SiC material system may provide the improved longevity and reliability for INI devices. The design, fabrication, and preliminary electrical and electrochemical testing of an all-SiC prototype microelectrode array based on 4H-SiC, with an amorphous silicon carbide (a-SiC) insulator, is described. The fabrication of the planar microelectrode was performed utilizing a series of conventional micromachining steps. Preliminary electrochemical data are presented which show that these prototype electrodes display suitable performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.