I provide a convolution metric which takes neural membrane potential recordings as arguments and compares their subthreshold features along with the timing and number of spikes within them-summarizing differences in these with a single "distance" between the recordings. Based on van Rossum's (2001) metric for spike trains, the metric relies on a convolution operation that it performs on the input data. The kernel used for the convolution is carefully chosen such that it produces a desirable frequency space response and, unlike van Rossum's kernel, causes the metric to be first order both in differences between nearby spike times and in differences between same-time membrane potential values: an important trait.
We propose general principles for semantic networks allowing them to be implemented as dynamical neural networks. Major features of our scheme include: (a) the interpretation that each node in a network stands for a bound integration of the meanings of all nodes and external events the node links with; (b) the systematic use of nodes that stand for categories or types, with separate nodes for instances of these types; (c) an implementation of relationships that does not use intrinsically typed links between nodes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.