It was the purpose of this study to evaluate the clinical long-term effects of PLLA degradation in vivo on nerve regeneration in the rat sciatic nerve model. Thirty-one Sprague Dawley rats were utilized. Two groups of animals were selected. The control group of 10 animals received a 12 mm reversed isograft into the right sciatic nerve from 5 donor animals. The experimental group (n = 21) received a 12 mm empty PLLA conduits placed into a 12 mm defect in the right sciatic nerve. The left leg served as an internal control. Walking track analysis was performed monthly through 8 months. At the end of 4 and 8 months, animals in the control isograft and experimental group had the medial and lateral gastrocnemius muscles harvested and weighed for comparison. The midconduit/isograft and the distal nerve in these same animals were harvested and histomorphologically analyzed. Multiple samples were collected and expressed as means +/- standard error. A two-sample t-test and Wilcoxon rank sum test was used to compare the variables. Significance level was set at alpha = 0.05. After Bonferroni correction for multiple testing, a p value of < or = 0.01 was considered statistically significant. Throughout all time periods, the PLLA conduit remained structurally intact and demonstrated tissue incorporation and vascularization. There was no evidence of conduit collapse or breakage with limb ambulation. Moreover, there was no evidence of conduit elongation at 8 months as previously observed with the 75:25 poly(DL-lactic-co-glycolic acid) (PLGA) conduits. The mean absolute value of the sciatic functional index (SFI) demonstrated no group differences from isograft controls measured over the 8 months except at 3 months where the isograft values were higher (p = 0.0379) and at 7 months were the isograft group was significantly lower (p = 0.0115). At 4 and 8 months, the weight of the gastrocnemius muscles of the experimental group was not significantly different from isografts. At 4 months the number of axons/mm2 and nerve fiber density was not significantly different between the isograft control and experimental groups in either the midconduit/isograft or distal nerve. At 8 months the number of axons/mm2 was significantly lower in the isograft compared to the midconduit experimental group (p = 0.006). The number of axons/mm2 in the distal nerve and the nerve fiber density in the midconduit and distal nerve were not significantly different between the two groups. The study confirmed our initial hypothesis that PLLA conduits are a viable scaffold for clinical long-term nerve gap replacement. We are critically aware however that longer evaluation of polymer degradation is warrented. Further studies on these individual nerve components are continuing, with the ultimate goal being the fabrication of a bioactive conduit that meets or exceeds the functional results of isografts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.