There is a great deal of evidence that altered sphingolipid metabolism is associated with fumonisin-induced animal diseases including increased apoptotic and oncotic necrosis, and carcinogenesis in rodent liver and kidney. The biochemical consequences of fumonisin disruption of sphingolipid metabolism most likely to alter cell regulation are increased free sphingoid bases and their 1-phosphates, alterations in complex sphingolipids, and decreased ceramide (CER) biosynthesis. Because free sphingoid bases and CER can induce cell death, the fumonisin inhibition of CER synthase can inhibit cell death induced by CER but promote free sphingoid base-induced cell death. Theoretically, at any time the balance between the intracellular concentration of effectors that protect cells from apoptosis (decreased CER, increased sphingosine 1-phosphate) and those that induce apoptosis (increased CER, free sphingoid bases, altered fatty acids) will determine the cellular response. Because the balance between the rates of apoptosis and proliferation is important in tumorigenesis, cells sensitive to the proliferative effect of decreased CER and increased sphingosine 1-phosphate may be selected to survive and proliferate when free sphingoid base concentration is not growth inhibitory. Conversely, when the increase in free sphingoid bases exceeds a cell's ability to convert sphinganine/sphingosine to dihydroceramide/CER or their sphingoid base 1-phosphate, then free sphingoid bases will accumulate. In this case cells that are sensitive to sphingoid base-induced growth arrest will die and insensitive cells will survive. If the cells selected to die are normal phenotypes and the cells selected to survive are abnormal, then cancer risk will increase.
The use of botanicals and dietary supplements derived from natural substances as an adjunct to an improved quality of life or for their purported medical benefits has become increasingly common in the United States. This review addresses the safety assessment and regulation of food products containing these substances by the U.S. Food and Drug Administration (FDA). The issue of safety is particularly critical given how little information is available on the toxicity of some of these products. The first section uses case studies for stevia and green tea extracts as examples of how FDA evaluates the safety of botanical and herbal products submitted for consideration as Generally Recognized as Safe under the Federal Food, Drug, and Cosmetics Act. The 1994 Dietary Supplement Health Education Act (DSHEA) created a regulatory framework for dietary supplements. The article also discusses the regulation of this class of dietary supplements under DSHEA and addresses the FDA experience in analyzing the safety of natural ingredients described in pre-market safety submissions. Lastly, we discuss an ongoing interagency collaboration to conduct safety testing of nominated dietary supplements.
There is a great deal of evidence that altered sphingolipid metabolism is associated with fumonisin-induced animal diseases including increased apoptotic and oncotic necrosis, and carcinogenesis in rodent liver and kidney. The biochemical consequences of fumonisin disruption of sphingolipid metabolism most likely to alter cell regulation are increased free sphingoid bases and their 1-phosphates, alterations in complex sphingolipids, and decreased ceramide (CER) biosynthesis. Because free sphingoid bases and CER can induce cell death, the fumonisin inhibition of CER synthase can inhibit cell death induced by CER but promote free sphingoid base-induced cell death. Theoretically, at any time the balance between the intracellular concentration of effectors that protect cells from apoptosis (decreased CER, increased sphingosine 1-phosphate) and those that induce apoptosis (increased CER, free sphingoid bases, altered fatty acids) will determine the cellular response. Because the balance between the rates of apoptosis and proliferation is important in tumorigenesis, cells sensitive to the proliferative effect of decreased CER and increased sphingosine 1-phosphate may be selected to survive and proliferate when free sphingoid base concentration is not growth inhibitory. Conversely, when the increase in free sphingoid bases exceeds a cell's ability to convert sphinganine/sphingosine to dihydroceramide/CER or their sphingoid base 1-phosphate, then free sphingoid bases will accumulate. In this case cells that are sensitive to sphingoid base-induced growth arrest will die and insensitive cells will survive. If the cells selected to die are normal phenotypes and the cells selected to survive are abnormal, then cancer risk will increase.
These studies determined (1) the time course for sphingoid base elevation in the small intestines, liver, and kidney of mice following a single 25 mg/kg body weight (bw) oral dose (high dose) of fumonisin B(1) (FB(1)), (2) the minimum threshold dose of FB(1) that would prolong the elevated sphingoid base concentration in kidney following the single high dose, and (3) the importance of the balance between the rate of sphingoid base biosynthesis and degradation in the persistence of sphingoid base accumulation. Following the high dose of FB(1), there was an increase in sphinganine in intestinal cells and liver that peaked at 4 to 12 h and declined to near the control level by 48 h. In kidney, sphinganine peaked at 6-12 h but remained elevated until 72 h, approaching control levels at 96-120 h. Oral administration of 0.03 mg FB(1)/kg bw (low dose) for 5 days had no effect on the sphingoid bases in kidney. However, following an initial high dose, daily administration of the low dose prolonged the elevation in kidney sphinganine compared to mice receiving a single high dose. Thus, a single exposure to a high dose of FB(1) followed by daily exposure at low levels will prolong the elevation of sphinganine in kidney. In cultured renal cells FB(1) was rapidly eliminated, but elevated sphinganine was persistent. This persistence in renal cells was rapidly reversed in the presence of the serine palmitoyltransferase inhibitor (ISP-1), indicating that the persistence was due to differences in the rates of sphinganine biosynthesis and degradation. The in vivo persistence in kidney may be due to similar differences.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.