Inactivation of the Caenorhabditis elegans gene clk-1, which is required for ubiquinone biosynthesis, increases lifespan by an insulin signaling-independent mechanism. We find that homozygous inactivation of mclk1, the mouse ortholog of clk-1, yields ES cells that are protected from oxidative stress and damage to DNA. Moreover, in the livers of old mclk1 +/− mice, hepatocytes that have lost mclk1 expression by loss of heterozygosity undergo clonal expansion, suggesting that their resistance to stress allows them to outcompete cells that still express the gene. mclk1 +/− mice, whose growth and fertility are normal, also display a substantial increase in lifespan in each of three different genetic backgrounds. These observations indicate that the distinct mechanism by which clk-1/mclk1 affects lifespan is evolutionarily conserved from nematodes to mammals and is not tied to a particular anatomy or physiology.[Keywords: clk-1; mclk1; aging; loss of heterozygosity; reactive oxygen species; ubiquinone] Supplemental material is available at http://www.genesdev.org.
Dopamine-modulated behaviors, including information processing and reward, are subject to behavioral plasticity. Disruption of these behaviors is thought to support drug addictions and psychoses. The plasticity of dopaminemediated behaviors, for example, habituation and sensitization, are not well understood at the molecular level. We show that in the nematode Caenorhabditis elegans, a D1-like dopamine receptor gene (dop-1) modulates the plasticity of mechanosensory behaviors in which dopamine had not been implicated previously. A mutant of dop-1 displayed faster habituation to nonlocalized mechanical stimulation. This phenotype was rescued by the introduction of a wild-type copy of the gene. The dop-1 gene is expressed in mechanosensory neurons, particularly the ALM and PLM neurons. Selective expression of the dop-1 gene in mechanosensory neurons using the mec-7 promoter rescues the mechanosensory deficit in dop-1 mutant animals. The tyrosine hydroxylase-deficient C. elegans mutant (cat-2) also displays these specific behavioral deficits. These observations provide genetic evidence that dopamine signaling modulates behavioral plasticity in C. elegans.
Although there is a consensus that mitochondrial function is somehow linked to the aging process, the exact role played by mitochondria in this process remains unresolved. The discovery that reduced activity of the mitochondrial enzyme CLK-1/MCLK1 (also known as COQ7) extends lifespan in both Caenorhabditis elegans and mice has provided a genetic model to test mitochondrial theories of aging. Because it is well known that the aging process is characterized by declines in basal metabolic rate and in the general performance of energy-dependent processes, many aging studies have focused on mitochondria because of their central role in producing chemical energy (ATP) by oxidative phosphorylation (1). Among the various theories of aging that have been proposed, the mitochondrial oxidative stress theory of aging is the most widely acknowledged and studied (2-4). It is based on the observation that mitochondrial energy metabolism produces reactive oxygen species (ROS), 2 that mitochondrial components are damaged by ROS, that mitochondrial function is progressively lost during aging, and that the progressive accumulation of global oxidative damage is strongly correlated with the aged phenotype. However, the crucial question of whether these facts mean that mitochondrial dysfunction and the related ROS production cause aging remains unproven (5-7). Furthermore, recent observations made in various species, including mammals, have begun to directly challenge this hypothesis, notably by relating oxidative stress to long (8) or increased (9) lifespans, by demonstrating that overexpression of the main antioxidant enzymes does not extend lifespan (10) as well as by showing that mitochondrial dysfunction could protect against age-related diseases (11).A direct and powerful approach to attempt to clarify this major question and to test the theory is to characterize the mitochondrial function of long-lived mutants (12). CLK-1/ MCLK1 is an evolutionary conserved protein (13) and has been found to be located in the mitochondria of yeast (14), worms (15), and mice (16). The inactivation of the Caenorhabditis elegans gene clk-1 substantially increases lifespan (17). Moreover, the elimination of one functional allele of its murine orthologue also resulted in an extended longevity for Mclk1 ϩ/Ϫ mice in three distinct genetic backgrounds (18). These findings have provided for an evolutionarily conserved pathways of animal aging that is affected by the function of a mitochondrial protein (19,20). In mitochondria CLK1/MCLK1 acts as an hydroxylase and is implicated in the biosynthesis of ubiquinone (coenzyme Q or UQ), a lipid-like molecule primarily known as an electron carrier in the mitochondrial respiratory chain and as a membrane antioxidant but which is also associated with an increasing number of different aspects of cellular metabolism (20,21). Taken together, these observations indicate that the long-lived Mclk1 ϩ/Ϫ mouse is a model of choice for the understanding of the links between mitochondrial energy metabolism, oxidative stre...
MCLK1 and COQ3 are mitochondrial enzymes necessary for ubiquinone biosynthesis, but only MCLK1 also regulates the partitioning of ubiquinone between mitochondrial membranes and affects longevity in mice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.