In mammals, dihydroorotase is part of a trifunctional protein, dihydroorotate synthetase, which catalyzes the first three reactions of de novo pyrimidine biosynthesis. Dihydroorotase catalyzes the formation of a peptide-like bond between the terminal ureido nitrogen and the beta-carboxyl group of N-carbamyl-L-aspartate to yield heterocyclic L-dihydroorotate. A variety of evidence suggests that dihydroorotase may have a catalytic mechanism similar to that of a zinc protease [Christopherson, R. I., & Jones, M. E. (1980) J. Biol. Chem. 255, 3358-3370]. Tight-binding inhibitors of the zinc proteases, carboxypeptidase A, thermolysin, and angiotensin-converting enzyme have been synthesized that combine structural features of the substrates with a thiol or carboxyl group in an appropriate position to coordinate a zinc atom bound at the catalytic site. We have synthesized (4R)-2-oxo-6-thioxohexahydropyrimidine-4-carboxylate (L-6-thiodihydroorotate) and have found that this analogue is a potent competitive inhibitor of dihydroorotase with a dissociation constant (Ki) in the presence of excess Zn2+ ion of 0.17 +/- 0.02 microM at pH 7.4. The potency of inhibition by L-6-thiodihydroorotate in the presence of divalent metal ions decreases in the order Zn2+ greater than Ca2+ greater than Co2+ greater than Mn2+ greater than Ni2+; L-6-thiodihydroorotate alone is less inhibitory and has a Ki of 0.85 +/- 0.14 microM. 6-Thioorotate has a Ki of 82 +/- 8 microM which decreases to 3.8 +/- 1.4 microM in the presence of Zn2+. Zn2+ alone is a moderate inhibitor of dihydroorotase and does not enhance the potency of other inhibitors.(ABSTRACT TRUNCATED AT 250 WORDS)
The bifunctional enzyme 5-aminoimidazole-4-carboxamide ribotide (AICAR) transformylase-IMP cyclohydrolase has been purified 780-fold to apparent homogeneity from human CCRF-CEM leukemia cells, completed with chromatography on Affi-Gel Blue followed by AICAR-Sepharose 4B. Using a sensitive radioassay, IMP cyclohydrolase has a Ks value for 5-formamidoimidazole-4-carboxamide ribotide (FAICAR) at pH 7.4 of 0.87 +/- 0.11 microM. The following purine nucleotide derivatives were potent competitive inhibitors of IMP cyclohydrolase: 2-mercaptoinosine 5'-monophosphate (Ki = 0.094 +/- 0.024 microM), xanthosine 5'-monophosphate (Ki = 0.12 +/- 0.01 microM), 2-fluoroadenine arabinoside 5'-monophosphate (Ki = 0.16 +/- 0.02 microM), 6-mercaptopurine riboside 5'-monophosphate (Ki = 0.20 +/- 0.02 microM), adenosine N1-oxide 5'-monophosphate (Ki = 0.28 +/- 0.03 microM), and N6-(carboxymethyl)adenosine 5'-monophosphate (Ki = 1.7 +/- 0.42 microM). The pH dependencies of Vmax and Vmax/Ks values for IMP cyclohydrolase are consistent with a single ionizable amino acid residue (pKa = 7.57 +/- 0.09) of the enzyme which must be unprotonated for catalysis to occur and a residue (pKa = 7.57 +/- 0.14) which must be unprotonated for FAICAR to bind. The pKa values of 5.81 +/- 0.03 and 9.41 +/- 0.04 determined for FAICAR indicate that ionization of the substrate does not contribute significantly to the pH effects observed. Chemical modification of IMP cyclohydrolase provides evidence for arginine and cysteine residues at the active site, and roles for these residues in the mechanism of catalysis are proposed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.