In this study, we evaluated baseline susceptibility to bevirimat (BVM), the first in a new class of antiretroviral agents, maturation inhibitors. We evaluated susceptibility to BVM by complete gag genotypic and phenotypic testing of 20 patient-derived human immunodeficiency virus type 1 isolates and 20 site-directed mutants. We found that reduced BVM susceptibility was associated with naturally occurring polymorphisms at positions 6, 7, and 8 in Gag spacer peptide 1.
We have described recently the purification and cloning of PP2A (protein phosphatase 2A) leucine carboxylmethyltransferase. We studied the purification of a PP2A-specific methylesterase that co-purifies with PP2A and found that it is tightly associated with an inactive dimeric or trimeric form of PP2A. These inactive enzyme forms could be reactivated as Ser/Thr phosphatase by PTPA (phosphotyrosyl phosphatase activator of PP2A). PTPA was described previously by our group as a protein that stimulates the in vitro phosphotyrosyl phosphatase activity of PP2A; however, PP2A-specific methyltransferase could not bring about the activation. The PTPA activation could be distinguished from the Mn2+ stimulation observed with some inactive forms of PP2A, also found associated with PME-1 (phosphatase methylesterase 1). We discuss a potential new function for PME-1 as an enzyme that stabilizes an inactivated pool of PP2A.
The goal of this study was to explore the presence of integrase strand transfer inhibitor (InSTI) resistance mutations in HIV-1 quasispecies present in InSTI-naïve patients and to evaluate their in vitro effects on phenotypic susceptibility to InSTIs and their replication capacities. The RT-RNase H-IN region was PCR amplified from plasma viral RNA obtained from 49 HIV-1 subtype B-infected patients (21 drug naïve and 28 failing highly active antiretroviral therapy [HAART] not containing InSTIs) and recombined with an HXB2-based backbone with RT and IN deleted. Recombinant viruses were tested against raltegravir and elvitegravir and for replication capacity. Three-hundred forty-four recombinant viruses from 49 patients were successfully analyzed both phenotypically and genotypically. The majority of clones were not phenotypically resistant to InSTIs: 0/344 clones showed raltegravir resistance, and only 3 (0.87%) showed low-level elvitegravir resistance. No primary resistance mutations for raltegravir and elvitegravir were found as major or minor species. The majority of secondary mutations were also absent or rarely present. Secondary mutations, such as T97A and G140S, found rarely and only as minority quasispecies, were present in the elvitegravir-resistant clones. A novel mutation, E92G, although rarely found in minority quasispecies, showed elvitegravir resistance. Preexisting genotypic and phenotypic raltegravir resistance was extremely rare in InSTI-naïve patients and confined to only a restricted minority of secondary variants. Overall, these results, together with others based on population and ultradeep sequencing, suggest that at this point IN genotyping in all patients before raltegravir treatment may not be cost-effective and should not be recommended until evidence of transmitted drug resistance to InSTIs or the clinical relevance of IN minor variants/polymorphisms is determined.
The integrase inhibitor raltegravir (RAL) is currently used for the treatment of both treatment-naïve and treatment-experienced HIV-1-infected patients. Elvitegravir (EVG) is in late phases of clinical development. Since significant cross-resistance between RAL and EVG is observed, there is a need for second-generation integrase inhibitors (INIs) with a higher genetic barrier and limited cross-resistance to RAL/EVG. A panel of HIV-1 integrase recombinants, derived from plasma samples from raltegravir-treated patients (baseline and follow-up samples), were used to study the cross-resistance profile of two second-generation integrase inhibitors, MK-2048 and compound G. Samples with Q148H/R mutations had elevated fold change values with all compounds tested. Although samples with the Y143R/C mutation had reduced susceptibility to RAL, they remained susceptible to MK-2048 and compound G. Samples with the N155H mutation had no reduced susceptibility to compound G. In conclusion, our results allowed ranking of the INIs on the basis of the antiviral activities using recombinant virus stocks from RAL-treated patient viruses. The order according to decreasing susceptibility is compound G, MK-2048, and EVG.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.